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Abstract

The perturbation method is used to approximate optimal experimentation problems. The

approximation is in the neighborhood of the linear regulator (LR) problem. The first order

perturbation of the optimal decision under experimentation is a combination of the LR

solution and a term that captures the impact of the uncertainty on the agent’s value function.

An algorithm is developed in a companion paper to quickly implement this procedure on the

computer. As a result, the impact of optimal experimentation on an agent’s decisions can be

quantified and estimated for a large class of problems encountered in economics.
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1. Introduction

Economic agents usually find themselves in circumstances in which they have to
maximize their welfare while at the same time they must learn about fundamental
see front matter r 2007 Elsevier B.V. All rights reserved.
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relations that influence their payoffs. Optimal experimentation arises when the actions of
the agents impact their information set. In these circumstances the agents trade off
optimal control with optimal experimentation. In general these problems are difficult to
solve since the actions of the agents affect the distribution of payoffs. The microeconomic
literature has tended to focus on fixed states and non-linear payoffs. Within this context
researchers have characterized the tradeoffs between myopic behavior and the value of
information. The macroeconomic literature is focused more on changing state variables
with quadratic payoffs. This paper demonstrates how to use the perturbation method to
approximate the solution to experimentation problems found in macroeconomics.

The presence of optimal experimentation leads to stochastic problems with no
closed form solution. However, in the absence of optimal experimentation most
macroeconomic problems are reduced to augmented linear regulator (LR) problems.
In addition, most dynamic general equilibrium models of the economy are
approximated with log linearization methods which turn the model into an LR
problem. These LR problems have well defined solutions which involve iteration on
a Ricatti equation. This opens up the possibility of using perturbation methods to
approximate optimal experimentation problems in the neighborhood of the solution
to LR problems. In this procedure a parameter is introduced in which the optimal
experimentation problem reduces to the LR problem when the parameter is zero.
Subsequently, a Taylor series expansion around the zero value of the parameter is
calculated for the value function and optimal policy rule. In this paper a second
order expansion of the value function and a first order expansion of the policy
function is found. Thus, the dynamic general equilibrium models with optimal
experimentation can be approximated with the perturbation method introduced here
with the same degree of accuracy as log linearization methods.

The next section discusses the relation between this work and research on optimal
experimentation. Section 3 summarizes the procedures to solve LR problems following
Anderson et al. (1996). Section 4 develops the parameterization of the conditional
variance–covariance matrix of the optimal experimentation problem so that this
problem reduces to the Kalman filtering problem when the parameters are set equal to
zero. Section 5 derives the formula for optimal conditions in the presence of a second
order perturbation of the optimal experimentation problem. The stability properties of
this solution are also examined. In Section 6 the analysis of Balvers and Cosimano
(1990) is applied to a bank with some monopoly power that does not know the demand
for loans or the supply of deposits. This example is a generalization of Balvers and
Cosimano in that optimal experimentation for two separate relations is undertaken. In
addition, the state vector includes eleven variables, including lagged dependent variables,
which moves stochastically over time. The results of Balvers and Cosimano are
quantified in that both the loan and deposits rates slowly adjust to changes in market
conditions. The final section concludes the paper.

2. Related literature

Original work on the optimal experimentation for economic problems was carried
out by MacRae (1972, 1975) and Prescott (1971, 1972). Kendrick (2002a, b) discusses
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the role of optimal experimentation in stochastic control problems. He also provides
a comprehensive discussion of earlier developments for this problem. Easley and
Kiefer (1988), Kiefer and Nyarko (1989), Balvers and Cosimano (1990), Aghion et
al. (1991), Trefler (1993), Keller and Rady (1999), Bolton and Harris (1999), and
Moscarini and Smith (2001) are a few of the papers which analyze experimentation
problems in microeconomic settings. Balvers and Cosimano (1994), and Wieland
(2000a, 2006), provide discussions of the literature on optimal experimentation in
macroeconomic problems.

Wieland (2000a) shows how to use value and policy function iteration to examine
the behavior of optimal experimentation problems.1 He introduced the optimal
experimentation problem into otherwise static optimization problem.2 Within the
context of these problems he was able to identify as much as a 52% increase in the
agent’s value from experimentation.

Extending this procedure to more general problems or using it for the estimation
of experimentation effects is problematic. In the case of a continuous distribution in
which the agent is learning about four state variables Wieland’s computer program
takes about a week to find a solution.3 Wieland (2002) evaluates a more complex
macroeconomic problem in which agents learn about nine state variables. However,
computational time, about 60 h, limits the discussion to pairwise evaluation of the
complete optimal experimentation problem. Subsequently, Wieland (2006) examines
optimal learning about the Phillips curve when there is uncertainty about the natural
rate and the persistence of inflation. In this work it takes about 72 h to solve a model
with five state variables. This limits the application of this procedure to simple
calibration exercises and precludes the estimation of models of optimal experi-
mentation.4 In addition, optimal experimenting about multiple parameters or more
complex dynamic settings is prohibitive.

This paper provides an alternative procedure for approximating optimal
experimentation problems which can handle more complex optimal experimentation
problems, as well as the estimation of these problems. This alternative procedure is
based on the perturbation method of Gaspar and Judd (1997), Judd (1998), and Jin
and Judd (2002). This method may be applied when the solution to the problem can
be represented by a Taylor series.5 The perturbation method is useful when a more
general problem reduces to a simpler problem under some well-defined circum-
stances. In addition, the simpler problem has a well-developed solution method. The
perturbation method proceeds to introduce parameters such that the general
problem reduces to the simpler problem when these parameters are zero. The more
1Beck and Wieland (2002) use the same technique when the state variable is dependent on one lag of the

dependent variable.
2Balvers and Cosimano (1990, 1994) and Wieland (2000b) provide examples in which this approach may

be applied.
3Over the years the increased capacity of computers has resulted in a significant reduction in this time.
4Wieland (2000b) provides a good example of a calibration exercise.
5Chen et al. (2005) show that solution to discrete time asset pricing problems can be represented as a

Taylor series when the components of the problem can also be represented by a Taylor series. Such

functions are called analytic.
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general problem is then approximated by taking a Taylor series approximation
around zero values for the perturbation parameters.

In most macroeconomic problems on optimal experimentation the objective is
quadratic and the equations of motions are linear. It is also possible to introduce
parameters which remove the optimal experimentation problem. For example in
Wieland’s (2000b) optimal monetary policy problem the optimal experimentation
issue would not be present when the central bank knows the impact of interest rates
on inflation. Consequently, the optimal experimentation may be removed by
attaching a parameter to the error term for this slope coefficient and setting the
parameter to zero.6

Without the optimal experimentation these problems fall into the general rubric of
LR problem. Also it is traditional in simulations of dynamic general equilibrium
models to use a second order approximation of the value function and a first order
approximation of the equations of motions which turns these models into a LR
problem. For example, one can use the computer algorithm Dynare to do these
approximations. The procedures for solving the LR problems have been developed
by Hansen and Sargent (1998), and Anderson et al. (1996). As a result, one can use
the perturbation method to approximate the optimal decision of an agent in the
presence of experimentation. In this paper the second order perturbation to the
experimentation problem is found in the neighborhood of the LR solution. The
optimal decision starts with the optimal decision found in Anderson et al. Appended
to this decision is a term which captures the effect of the conditional
variance–covariance matrix on the agents’ optimal decisions. Thus, it is now feasible
to examine the impact of optimal experimentation on any dynamic general
equilibrium model.

This additional impact on the optimal decisions of the agent is akin to Ito’s
lemma in continuous time stochastic control problems.7 The effect of optimal
experimentation works through the second order effect of the variance–covariance
matrix on the agent’s marginal valuation of each state. This effect may be
decomposed into two parts based on the chain rule. The variance–covariance matrix
first changes how each state variable impacts the equation of motion for the state
variables. This part occurs because this change influences the Kalman gain. The
second part consist of the marginal impact of the state variables on the agent’s
valuation. The perturbation method develops a systematic way to measure these
effect of optimal experimentation which is then added to the optimal decision from
the LR problem.

There are several benefits to this procedure. First, it builds on a well-developed
procedure for handling a large class of economic problems. This class of problems
includes those found in the literature on optimal experimentation, as well as dynamic
general equilibrium models. Second, the procedure can be implemented on a
6A similar set up could be used to apply the perturbation method to Balvers and Cosimano (1990, 1994).
7Keller and Rady (1999), Bolton and Harris (1999), and Moscarini and Smith (2001) provide examples

of an optimal experimentation problem in continuous time. Bensoussan (1992) provides mathematical

analysis of latent variables and stochastic control in continuous time.

Please cite this article as: Cosimano, T.F., Optimal experimentation and the perturbation method in

the.... Journal of Economic Dynamics and Control (2007), doi:10.1016/j.jedc.2007.03.009

dx.doi.org/10.1016/j.jedc.2007.03.009


ARTICLE IN PRESS

T.F. Cosimano / Journal of Economic Dynamics & Control ] (]]]]) ]]]–]]] 5
computer in a timely manner.8 Finally, by suitably modifying the estimation
procedure of Anderson et al. it is now feasible to estimate optimal decision rules of
agents in the presence of optimal experimentation. For example Sargent (1999)
develops an optimal monetary control problem which fits into the Anderson et al.
framework.9 This optimal monetary control problem is a more general version of
Wieland (2000b). Thus, it would be feasible to estimate an optimal central bank
reaction function in the presence of optimal experimentation.

The main drawback of this procedure is that it assumes that the value function and
optimal decisions are differentiable in the neighborhood of the LR solution.
Otherwise a Taylor series is not well defined for the solution. There are at least three
reasons found in the literature when the value or policy functions are not
differentiable. First, Balvers and Cosimano (1993) develop an example in which
the objective of the agent is convex. Earlier, Easley and Kiefer (1988) showed that
the value function is convex in the conditional distribution of the shocks. As a result,
the Bellman equation is convex. Thus, the optimal decision is a corner solution.
Balvers and Cosimano show that the value function is not differentiable when the
agents switches between corner solutions. This problem would not occur when the
one period reward function is sufficiently concave relative to the convex effect of
experimentation.10 This condition may be checked in the perturbation method by
examining whether a particular matrix is negative definite in the neighborhood of the
LG solution.11 Next, Santos (1994) shows that the policy function also fails to be
differentiable when the dynamics are such that the system converges to a corner
solution. This problem can be identified by examining the stability of the system of
equations as in Section 5.

Finally, Keller and Rady (1999) and Wieland (2000a) show that the value and
policy functions are not differentiable when the agent has incorrect limit beliefs.
Following Kiefer and Nyarko (1989), Wieland identifies three properties of limit
beliefs and optimal decisions. First beliefs must be self-reinforcing. Second, given the
limit beliefs the reward function should be optimized. Third, if the control variable is
held constant, the agent would learn the mean value of the latent variables. The
possible solution to these conditions are incorrect when the expected values of the
latent parameters do not converge to their true value. In the simulations Keller and
Rady (1999), and Wieland (2000a) find that the value function and optimal decisions
are not differentiable when the latent parameter corresponds to an incorrect limit
belief. Thus, the procedure needs to avoid these possibilities.
8The computer program for this paper is tailored to the specific example. Subsequently, Cosimano and

Gapen (2006) have developed a computer algorithm in Matlab which can be applied to any log-linearize

dynamic general equilibrium model. Running this algorithm takes a few seconds on a standard PC.
9Wieland’s (2002) model of monetary policy under uncertainty about the natural rate of unemployment

and Woodford’s (2002) model of imperfect common knowledge could also fit within this class of models.
10Keller and Rady (1999) analyze a similar problem when the agent’s objective is concave. In this case

corner solutions arise when the experimentation effect is dominant. However, in this continuous time case

the value function is differentiable.
11This matrix is effectively an approximation of the Hessian matrix for the Bellman equation.
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In Cosimano and Gapen (2006) the model of Beck and Wieland (2002) is
simulated using the computer algorithm which implements the perturbation method
developed here. Kendrick (2006) is also working on simulating the Beck and Wieland
model to identify the cost and benefits of his procedure, developed in Kendrick
(2002a), relative to the other procedures. Cosimano and Gapen find that the
perturbation method and dynamic programming method provide the same solution
when there is no discontinuity in the optimal control. However, the perturbation
method cannot pick up the circumstance in the Beck and Wieland model associated
with incorrect limiting beliefs. As a result, the dynamic programming methods of
Wieland (2000a) must be used to help identify regions of incorrect limiting beliefs.
Under such circumstances the use of the perturbation method is inappropriate.

Using the perturbation method in the neighborhood of the LR problem to
approximate optimal experimentation problems fails to capture the convergence to
incorrect limit beliefs and the convergence to corner solutions. The reason is that
perturbation methods provides an approximations within the neighborhood of the
LR problem so that it is only a local solution. Starting with Marcet and Sargent
(1989) the literature on optimal learning has developed conditions under which the
learning procedure converges to the true parameter values.12 Hansen and Sargent
(1998) use the Kalman filtering procedure to represent optimal learning in stochastic
LR problems. They also show that the Kalman filtering procedure is the dual for the
LR problem. As a result, the conditions for the convergence of the Kalman filter are
similar to those for a stable LR problem. As a result, the perturbation is going to
mimic the convergence behavior of the LR problem (optimal learning), since it
approximates the optimal experimentation problem only in a neighborhood of this
problem.

Under the perturbation method the optimal control solution cannot be separated
from the experimentation problem since the first order perturbation of the optimal
experimentation problem is dependent on the spread between the variance–covar-
iance matrix under optimal experimentation and learning, respectively. In the
analysis here the system of difference equations for both the closed loop system for
the state vector and the equation of motion for the variance–covariance matrix are
found in the neighborhood of the LR solution. Because the equation of motion for
the variance–covariance matrix is not a function of the state vector, the system is
upper triangular. This means that the conditions for the stability for the closed loop
system and the Kalman filter are sufficient for the stability of the system.

In this paper the optimal experimentation problem is approximated by developing
a parameterization which collapses the optimal experimentation problem to the
optimal learning problem in LR problems. These conditions would rule out
problems raised by Santos (1994). In addition, when beliefs converge, the
expectation of the latent parameter will satisfy the mean prediction property.
12In optimal learning problems the agent’s actions do not affect the information used to update forecast,

while it does under optimal experimentation. See Evans and Honkapohja (2001) for a detail survey and

discussion of the work on optimal learning. The recent special issue of this journal edited by Orphanides

and Williams (2005) contains recent contributions to this literature.
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In addition, the LR problem will be optimized. The difference is that the Kalman
gain will be smaller so that the conditional variance–covariance matrix will converge
faster to its steady state value. Thus, the perturbation method applied to optimal
experimentation problems in the neighborhood of the optimal learning problem will
converge to correct limit beliefs as long as the LR problem is stable. Consequently,
the approximation to the optimal experimentation problem will not capture the
circumstances in which this problem displays non-differentiability of the value and
policy functions. As a result, the analysis of Jin and Judd can be used to find the
perturbation to the optimal experimentation problem only in the neighborhood of
the LR problem.

This work complements the work on robust control by Hansen and Sargent (2001,
2003, 2004), Brock and Durlauf (2005), and Brock et al. (2003). In these papers
different types of model misspecification are introduced into optimal control
problems. In these papers the policy makers maximize their welfare subject to
uncertainty about the correct model. This maximization is undertaken given that
nature chooses the worst possible model. In the Hansen and Sargent framework
model uncertainty is incorporated into the error specification of the true model. They
show how the solution can be found using Riccati equations which are similar to
those found in the LR problem. It should be feasible in future research to integrate
the Hansen and Sargent model of robust control with the optimal experimentation in
this work. Brock, Durlauf and West also consider more discrete model
misspecification. For example, a RBC and a Neo Keynesian model of economy
imply two distinct ways in which money growth will impact the economy. The model
uncertainty in this paper is distinct from theirs and provides another reason why the
policy maker would be cautious about the appropriate policy to undertake.
3. The LR problem

The perturbation method is used to solve a general experimentation problem by
approximating the problem around a simpler problem with a known solution. In the
optimal experimentation problem the LR problem is taken as the simpler problem.
In this section the LR problem is summarized as well as its solution following
Hansen and Sargent (1998), and Anderson et al. (1996). The agent is assumed to
choose a sequence futg to maximize

�E
X1
t¼0

bt
½u0tRut þ y0tQyyyt þ 2y0tQyzzt þ z0tQzzzt þ 2u0tW

0
yyt þ 2u0tW

0
zzt�jF0

 !

subject to

xtþ1 �
ytþ1

ztþ1

 !
¼

Ayy Ayz

0 Azz

 !
yt

zt

 !
þ

By

0

 !
ut þ

Gyy Gyz

0 Gzz

 !
wytþ1

wztþ1

 !

¼ Axt þ But þ Gw1tþ1.
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Here fFt : t ¼ 0; . . .g is an increasing sequence of information sets which is based on
a martingale difference process w01tþ1 � ðwytþ1;wztþ1Þ

0 such that Eðw1tþ1jFtÞ ¼ 0 and
Eðw1tþ1w01tþ1jFtÞ ¼ I . ut is the p� 1 control vector, which may influence the q� 1
endogenous state vector yt but does not effect the r� 1 exogenous state vector, zt.
Each of the matrices are conformable to these vectors.

To solve this problem the cross product terms and the discount factor are
eliminated by defining the selection matrices Uy � ½I ; 0� and Uz � ½0; I � such that
UzAU 0y ¼ 0, UzGU 0y ¼ 0, and UzB ¼ 0. Next let

yt � bt=2Uyxt; zt � bt=2Uzxt; vt � bt=2
ðut þ R�1ðW 0

y W 0
zÞxtÞ, (1)

A0
yy A0

yz

0 A0
zz

0
@

1
A � b1=2ðA� BR�1W 0Þ; B0

y � b1=2UyB; and

Q0
yy Q0

yz

Q00

yz Q0
zz

0
@

1
A � Q�WR�1W 0:13

The solution to this LR problem is given by

vt ¼ �F yyt � Fzzt,

where F y � ½Rþ B0yPyBy�
�1B0yPyAyy and Fz � ½Rþ B0yPyBy�

�1B0y½PyAyz þ PzAzz�.
The solution is found in two steps. First, Py solves the Riccati equation

Py ¼ Qyy þ ½Ayy � ByFy�
0Py½Ayy � ByFy� þ F 0yRF y

and second, Pz satisfies the Sylvester equation

Pz ¼ Qyz þ ½Ayy � ByF y�
0PyAyz þ ½Ayy � ByF y�

0PzAzz.

Reversing the definitions in (1) the solution to the discounted LR problem is

ut ¼ �½F y þ R�1W 0
y�yt � ½F z þ R�1W 0

z�zt.

If we substitute this optimal decision rule into the law of motion for the state
variables we obtain

ytþ1

ztþ1

 !
¼

Ayy � By½F y þ R�1W 0
y� Ayz � By½Fz þ R�1W 0

z�

0 Azz

 !

�
yt

zt

 !
þ

Gyy Gyz

0 Gzz

 !
wytþ1

wztþ1

 !

¼ ½A� BF �xt þ Gw1tþ1.

This closed loop system determines the stability of the LR problem. In particular the
eigenvalues of the matrix ½A� BF � must be all less than one for the system to be stable.14
13To avoid unnecessary notation I delete the superscript on A and Q below.
14See Anderson et al. (1996) and Ljungqvist and Sargent (2000) for a discussion of stability.
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Under the LR problem the agent can learn about the economy independent of
their optimal decisions. This result follows from the certainty equivalence property.
Certainty equivalence is dependent on quadratic objectives, linear constraints and
independence among the distribution of shocks and the agents choice.

In learning problems the agent observes signals which are a linear combination of
the hidden state, control and random error vectors. For simplicity only the
endogenous state vector is hidden from the agent. The endogenous state vector
follows:

ytþ1 ¼ Ayyyt þ Ayzzt þ Byut þ G1w1tþ1; 15

while the agent observes each period t the s� 1 vector of signals

st ¼ Csyyt þ Cszzt þDut þHw2t.

Assume

E
w1tþ1

w2t

 !
ðw01tþ1 w02tÞ ¼

I 0

0 I

� �
.

The agent is interested in forecasting the endogenous state vector
ŷt ¼ Eðytjut; zt; st; st�1; . . . ; s0; x̂0Þ.

16 The Kalman filter updates the agent’s forecast
according to

ŷtþ1 ¼ Ayyŷt þ Ayzzt þ Byut þ Ktat,

where at ¼ st � ŝt ¼ Csyðyt � ŷtÞ þHw2t. The Kalman Gain is defined by

Kt ¼ AyyStC
0
syðCsyStC

0
sy þHH 0Þ�1,

and the conditional variance–covariance matrix of the state is updated according to

Stþ1 ¼ AyyStA
0
yy þ GG0 � AyyStC

0
syðCsyStC

0
sy þHH 0Þ�1CsyStA

0
yy.

In the optimal experimentation literature the agent has some ability to manipulate
the flow of information. This means that H is a function of the agent’s decisions, so
that the variance–covariance matrix for the signal is also a function of the control
vector, u. As a result the agent’s decision influences the distribution of the state
vector. Thus, the certainty equivalence property no longer holds. This means that the
agent’s optimization problem cannot be separated from their forecasting problem. In
the next section the optimal experimentation problem is formulated.
15The superscript 1 refers to the column’s of G associated with the endogenous state variables. Without

loss of generality from now on I will delete the superscript on G.
16Ljungqvist and Sargent (2000, pp. 643–649) derives the Kalman filter in a similar circumstances. They

also demonstrate the duality between the optimal control and filtering problem.
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4. Optimal experimentation

In the optimal experimentation problem the agent chooses a sequence futg to
maximize

�E
X1
t¼0

bt
½u0tRut þ y0tQyyyt þ 2y0tQyzzt þ z0tQzzzt þ 2u0tW

0
yyt þ 2u0tW

0
zzt�jF0

 !

subject to

xtþ1 ¼ Axt þ But þ Gw1tþ1,

ŷtþ1 ¼ Ayyŷt þ Ayzzt þ Byut þ Ktat ¼ F ½ut; ŷt; zt;St; t�, (2)

Kt ¼ AyyStC
0
syðCsyStC

0
sy þHH 0Þ�1, (3)

Stþ1 ¼ AyyStA
0
yy þ GG0 � AyyStC

0
syðCsyStC

0
sy þHH 0Þ�1CsyStA

0
yy

¼ G½ut; zt;St; t�, ð4Þ

ztþ1 ¼ Azzzt þ Gzzwztþ1 ¼ ZðztÞ,

and

E
X1
t¼0

½jutj
2 þ jytj

2�jF0

 !
o1.

Under optimal experimentation the agent is learning about both the endogenous state
vector yt as well as some of the parameters of the model. Usually, these parameters are
elements of the matrices Ayy, Ayz and By. Kendrick (2002a) keeps these two vectors
separate in his notation since the control vector does not influence the parameters of the
model. To keep the notation simpler the equation of motions for the unknown
parameters is attached to the bottom of the endogenous state vector.

In the optimal experimentation problem, the variance–covariance of the signal,
HH 0, is a function of the current control ut and exogenous state vector zt. In
particular, the uncertainty in the signals is a linear function of the control and
exogenous state vectors. This effect may be represented by replacing Hw2t with

Hw2t þ t1u0t�1t þ t2z0t�2t,

where w2t, �1t, and �2t are not correlated. The variance–covariance matrix, HH 0, is
now

Vt ¼ HH 0 þ t21u0tV3ut þ t22z0tV4zt, (5)

where V3 ¼ Et½�1t�01t� and V 4 ¼ Et½�2t�02t�. The t1 and t2 are perturbation parameters
such that each element is equal to one under optimal experimentation.17 These
17Ljungqvist and Sargent (2000, pp. 643–649) allow for time varying variance–covariance matrix as long

as the agent knows them.
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perturbation parameters can be thought of as the parameters in the definition of
directional derivatives in the direction ut and zt, respectively. In addition, as both t1
and t2 approach zero the variance–covariance matrix approaches HH 0, so that the
problem reduces to the LR problem.

In this case the Bellman equation becomes

V ½ŷt; zt;St; t� ¼ E½P½ut; yt; zt; t� þ bV ½ŷtþ1; ztþ1;Stþ1; t�jFt�. (6)

Here

P½ut; yt; zt; t� ¼ �ðu0tRut þ y0tQyyyt þ 2y0tQyzzt þ z0tQzzzt þ 2u0tW
0
yyt þ 2u0tW

0
zztÞ.

This dynamic programming problem incorporates two new effects which are not
present in the LR problem. In both cases the control vector effects the
variance–covariance of the signal by (5). The first effect measures the effect of the
choice on the Kalman gain through Eq. (3) which in turn influences the conditional
expectation of ytþ1 in (2). The second effect deals with the optimal choice on the
conditional variance–covariance matrix for ytþ1 in (4). To analyze these effects it is
necessary to find the first and second order derivatives of F ½ut; ŷt; zt;St; t� and
G½ut; zt;St; t� under optimal experimentation. In Appendix A the following Lemma is
proved.

Lemma 1. The partial derivative of the Kalman filter are qF=qut ¼ vecð½B0y; 0
0�Þ,

qF=qŷt ¼ vecð½A0yy; 0
0�Þ � ððKt

0
Þ � IqÞðCsy � IqÞ vecðIqÞ, qF=qzt ¼ vecð½A0yz;A

0
zz�Þ, qF=

qSta0,qF=qt1 ¼ 0, qF=qt2 ¼ 0, q2F=qutqSt ¼ 0, q2F=qŷtqSta0, q2F=qztqSt ¼ 0,
q2F=qS2

t a0, qG=qut ¼ 0, qG=qzt ¼ 0, qG=qSta0, qG=qt1 ¼ 0, qG=qt2 ¼ 0, and

q2G=qS2
ta0 when the perturbation parameters are zero.18

The control and exogenous state variables change the agent’s forecast,
F ½ut; ŷt; zt;St; t�, of the state vector only through their direct effect on the
endogenous state vector. On the other hand, a change in the estimated endogenous
state vector, ŷt, also changes the signal received by the agent which influences the
state vector through the Kalman gain, Kt. The variance–covariance matrix effects
the agent’s forecast of the endogenous state vector through the change in the
Kalman gain.

The equation of motion for the variance–covariance matrix, G½ut; zt;St; t� is not
influenced by the control and the exogenous state vector when the perturbation
parameters are zero. The change in the current variance–covariance matrix on its
future value has two effects. The direct effect is generally positive but the effect on
the Kalman gain moves in the opposite direction. In the example discussed below the
direct effect always dominates. Because the filtering problem is the dual of the
control problem the variance–covariance matrix converges to a steady state over
time under conditions similar to the conditions necessary for the stability of the state
vector.
18To cut down on notation the functions F and Z have been stacked together and is called F. vec(A)

stacks the columns of A in a vector starting with the first column.
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5. Perturbation method

The optimal experimentation problem introduced in the previous section does not
have an explicit solution. In this section the perturbation method is used to
approximate this problem following the analysis of Gaspar and Judd (1997), Judd
(1998), and Jin and Judd (2002). The optimal experimentation problem fits into the
general stochastic model of Jin and Judd. The perturbation of the stochastic model
examined here is around the solution to the LR problem which is distinct from Jin
and Judd in that they examine the perturbation around a certain steady state.
However, the LR problem does have an analytic solution and the Kalman gain is
analytic. As a result, the optimal experimentation problem should be analytic in the
neighborhood of the LR problem, so that Jin and Judd’s Theorem 6 implies that
there is a unique and differentiable solution to the optimal experimentation problem
in the neighborhood of the LR problem.19

The tensor notation is used extensively in the perturbation method.20 This
notation may be illustrated by writing the quadratic form x0Ax as aijx

iyj which
means

P
i

P
j aijx

iyj. As a result, a summation occurs whenever a superscript and a
subscript match. The partial derivatives qF ½ŷt; zt; ut;St; t�=qx̂t are represented by Fi

j

for each state vector. For example F i
j ¼ ai

zz;j for the exogenous state vectors i and j.
In a similar way Fi

a would be the partial derivative of the ith state variable with
respect to the ath control. Fi

a ¼ 0 for the exogenous state vectors. Fi
I represents the

partial derivative of the ith state variable with respect to the Ith variance or
covariance term. Fi

I ¼ 0 for the exogenous state vectors. Finally, Fi
I represents the

partial derivative of the ith state variable with respect to the Ith perturbation
parameter. Fi

I ¼ 0 for both state vectors.
Given this notation the Euler conditions may be written as

E½Pa½u½ŷt; zt;St; t�; yt; zt; t� þ bV i½ŷtþ1; ztþ1;Stþ1; t�Fi
a½u½ŷt; zt;St; t�; ŷt; zt;St; t�

þ bV I ½ŷtþ1; ztþ1;Stþ1; t�GI
a½u½ŷt; zt;St; t�; zt;St; t�jFt�p0 ð7Þ

for each control a ¼ 1 � � � p.
To illustrate how the tensor notation is used look at the second term for the ath

control vector

bV i½ŷtþ1; ztþ1;Stþ1; t�Fi
a½u½ŷt; zt;St; t�; ŷt; zt;St; t�

¼ b
Xq

i¼1

qV ½ŷtþ1; ztþ1;Stþ1; t�
qŷtþ1i

qŷtþ1i

qua
,

where q is the dimension of the endogenous state vector. Consequently, this term is
just the application of the chain rule for a higher dimension. It is also the usual term
found in the necessary conditions for the optimal of a dynamic programming
problem.
19See Chen et al. (2005) for a discussion of analytic solutions to linear integral equations.
20See Gaspar and Judd (1997) and Kay (1988) for details about using tensor notation.
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The first two lines of (7) are similar to the Euler equation under the LR problem.
The third line is new. It looks at changes in the future variance–covariance matrix as
a result of a change in the control variable, qStþ1;I=qua ¼ GI

a, which in turn
influences the value of the firm, VI . While the value function is affected by the
variance–covariance matrix when the perturbation parameter is zero, Lemma 1
shows that the variance–covariance would not be changed by the change in the
control variables in the neighborhood of the LR problem. Lemma 1 also shows that
the variance–covariance matrix does not influence the effect of the control variable
on the state variables, qŷtþ1i=qua ¼ F i

a½u½ŷt; zt;St; t�; ŷt; zt;St; t� in the neighborhood
of the LR problem. This means that the main impact of the optimal experimentation
under the perturbation is given by the impact of the future variance–covariance
matrix on the marginal value of the state variable, V i½ŷtþ1; ztþ1;Stþ1; t�. As a result,
V iK ½ŷ

LR
tþ1; ztþ1;SLR

tþ1; 0� must be calculated in the neighborhood of the LR problem
where the superscript LR refers to the linear regulator solution.

Solving the optimal learning problem (6) and (7) explicitly is problematic. The
difficulty comes about because of the additional non-linearity introduced by the
control variables influence on the Kalman filter. However, the problem reduces to
the LR problem when the perturbation parameter, t, is set equal to zero. As a result,
the perturbation method of Gaspar and Judd (1997), Judd (1998), and Jin and Judd
(2002) may be applied to (6) and (7).

Theorem 6 of Jin and Judd applies to this situation with a slight modification. Jin
and Judd apply the perturbation in the neighborhood of a certain steady state while
we are interested in the neighborhood of the LR problem. However, we do know
that the LR solution, u½ŷLR

t ; zLRt ;SLR
t ; 0�, is analytical since it is a simple linear

function of the state variables. It also follows from Lemma 1 that the equation of
motion for the state vector, F ½ut; ŷt; zt;St; t�, and the variance–covariance matrix,
G½ut; zt;St; t�, can be differentiated to any order in the neighborhood of the LR
solution, although Lemma 1 provides only the first two derivatives.21 It also follows
that these functions are analytical since they are compositions of analytic
functions.22 As a result, the argument of Jin and Judd follows so that there exist a
unique solution, u½ŷt; zt;St; t� and V ½ŷt; zt;St; t� to (6) and (7) in the neighborhood of
the LR problem. In addition derivatives of this solution may be found through
implicit differentiation in the same neighborhood.

The radius of convergence of this solution is not known. Up to now there are only
limited results on the radius of convergence for the solution to integral equations
such as (6) for the optimal experimentation problem. The radius of convergence is
the maximum interval in which the Taylor series for the solution converges. Chen et
al. (2005) develop a procedure for finding the radius of convergence to such an
integral equation when the solution is in R1 and the integral equation is linear in the
21Higher order perturbation of the control and value function are feasible, but it would be necessary to

find the corresponding order of the derivatives of F ½ut; ŷt; zt;St; t� and G½ut; zt;St; t�. While this is feasible it

would be very time consuming. As a result, one should rely on automatic differentiation to calculate higher

order derivatives and perturbations. See www.autodiff.org.
22See Chapter 10 of Rudin (1974).
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solution. While more general results are not available, it is known that analyticity
fails when the primitives are not analytical, the solution is not unique or the process
is unstable.23 In this case the primitives, such as the Kalman filter, are analytical.
Following the work of Kiefer and Nyarko (1989), Balvers and Cosimano (1993),
Keller and Rady (1999) and Wieland (2000a) the solution is unique as long as the
experimentation effect is not too large. Finally, the conditions under which the
process is stable will be discussed below. As a result, one can be confident the
solution is within the radius of convergence for the problems discussed here, as long
as one rules out these anomalies. In particular, the dynamic programming method of
Wieland (2000a) can be used to identify the points of discontinuous policy functions
and non-differentiable value functions in optimal experimentation problems.

The perturbation method involves a Taylor expansion of these functions around
the known LR solution. In this case the expansion is around ½ŷLR

t ; zt;SLR
t ; 0�.24

ua½ŷt; zt;St; t� � ua½ŷLR
t ; zt;SLR

t ; 0� þ ua
i ½ŷ

LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i

þ ua
I ½ŷ

LR
t ; zt;SLR

t ; 0�½St � SLR
t �

I . ð8Þ

V ½ŷt; zt;St; t� � V ½ŷLR
t ; zt;SLR

t ; 0� þ Vi½ŷ
LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i

þ VI ½ŷ
LR
t ; zt;SLR

t ; 0�½St � SLR
t �

I

þ 1
2V ij½ŷ

LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i½x̂t � x̂LR
t �

j

þ ViI ½ŷ
LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i½St � SLR
t �

I

þ 1
2
V IJ ½ŷ

LR
t ; zt;SLR

t ; 0�½St � SLR
t �

I ½St � SLR
t �

J . ð9Þ

As the perturbation vectors approach zero the variance–covariance term HH 0

approaches the LR value so that the equation of motion for the variance–covariance
matrix, G½ut; ztSt; t�, approaches its LR counterpart. Thus, St approaches SLR

t as t
tends to zero. In addition, the Kalman Gain, Kt, also approaches its value under the
LR problem so that x̂t tends to x̂LR

t . This means that the first two terms in (8) are
identical to the LR problem so that

ua½ŷLR
t ; zt;SLR

t ; 0� þ ua
i ½ŷ

LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i

¼ �½F y þ R�1W y�ŷ
LR
t � ½F y þ R�1W y�½ŷt � ŷLR

t � � ½F z þ R�1W z�zt.

A similar argument applied to (9) leads to

V ½ŷLR
t ; zt;SLR

t ; 0� þ Vi½ŷ
LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i

þ
1

2
Vij ½ŷ

LR
t ; zt;SLR

t ; 0�½x̂t � x̂LR
t �

i½x̂t � x̂LR
t �

j

¼ rþ ½x̂LR
t �
0

Py Pz

Pz Pzz

 !
½x̂LR

t � þ ½x̂t � x̂LR
t �
0

Py Pz

Pz Pzz

 !
½x̂t � x̂LR

t �.
23Chen et al. (2005) provide an example of the first failure. Balvers and Cosimano (1993) provides an

example of the second problem. Santos (1994) provides an example of the final case.
24In Appendix A it is shown that VI ¼ 0 and u

g
I ¼ 0.
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Here Pzz was not needed for the solution to the LR problem but can be found
from the Riccati equation following Hansen and Singleton (1998, p. 162.)

Pzz ¼ Qzz þ A0yzPyAyz þ A0zzP0zAyz þ A0yzPzAzz

� ½A0yzPyBy þ A0zzP0zBy�½Rþ B0yPyBy�
�1½B0yPyAyz þ B0yPzAzz� þ A0zzPzzAzz,

which is solved by iterating on Pzz. Finally, the constant in the value function, r, is
found by iterating on

rjþ1 ¼ brj þ b traceðPGG0Þ.

This term represents the impact of uncertainty on the value of the agent under the
LR problem so that uncertainty influences the value function even though it does not
affect the decision rule. All these terms can be calculated efficiently using the
doubling algorithm of Hansen and Sargent (1998).

The remainder of this section derives an expression for the last term in (8),
qua=qStI ¼ ua

I ½ŷ
LR
t ; zt;SLR

t ; 0� where the second subscript on the variance–covariance
matrix for the partial derivative refers to the particular element of the
variance–covariance matrix. First the impact of the uncertainty on the value
function is found by taking the total derivative of the value function (6) with respect
to each of the q2 variance–covariance terms in St. Here q is the number of
endogenous state variables which are hidden from the agent.

VI ½ŷt; zt;St; t� ¼ Et½bVj½ŷtþ1; ztþ1;Stþ1; t�F
j
I ½u½ŷt; zt;St; t�; ŷt; zt;St; t�

þ bV J ½ŷtþ1; ztþ1;Stþ1; t�GJ
I ½u½ŷt; zt;St; t�; zt;St; t��, ð10Þ

where I ¼ 1 � � � q2 terms are ordered as in vecðStÞ. In this equation all the terms are
known for the LR problem except VI . Eq. (10) is a first order system of stochastic
difference equations in the partial derivatives of the value function with respect to
the variance–covariance matrix. The forcing term consist of the impact of the
variance–covariance matrix on the state vector through the Kalman filter, F

j
I ,

which in turn changes the value function based on the marginal value of the state
vector, Vj. The future impact of the variance–covariance matrix on the value
function V J ½ŷtþ1; ztþ1;Stþ1; t� is changed because of the effect of the variance–
covariance matrix on its future value, qStþ1J=qStI ¼ GJ

I . For stability the q� q

matrix formed from GJ
I must have eigenvalues less than one. As a result, these

eigenvalues being less than one is an essential condition for the perturbation to be
well defined. In these circumstances, these equations can be stacked into a vector of
q2 first order linear difference equations which can be iterated on to yield
V I ½ŷ

LR
t ; zt;SLR

t ; 0� for all I.
To find the second order effects, qV=qStIqytk, in Appendix A (10) is differentiated

with respect to the qþ r state variables. When the perturbation vector is set to zero,
these derivatives are reduced to

VIk½ŷ
LR
t ; zt;SLR

t ; 0� ¼ Et½bV j½ŷ
LR
tþ1; ztþ1;SLR

tþ1; 0�F
j
Ik

þ bV Jl ½ŷ
LR
tþ1; ztþ1;SLR

tþ1; 0�ðF
l
k þ F l

au
a
kÞG

J
I �. ð11Þ
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This equation is also a system of first order stochastic difference equations. In this
case the forcing term is the effect of the variance–covariance matrix on the marginal
impact of the current state vector on the future state vector, qytþ1j=qStIqytk ¼ F

j
Ik.

The future impact of the variance–covariance matrix on the marginal value of the
state vector, V Ik is also changed because of the effect of the variance–covariance
matrix on its future value, GJ

I . Again, the eigenvalues of the matrix made up of the
elements GJ

I must be less than one for this system of difference equations to be stable.
Consequently, if (11) are stacked together for each variance–covariance term, then
(11) is a first order linear difference equation in the q2 � ðqþ rÞ terms for
V Ik½ŷ

LR
t ; zt;SLR

t ; 0�.
The results for a change in elements of the variance–covariance matrix on the

optimal control, qua=qStJ , can now be calculated. While the calculations are long,
the results are simplified since the function G is not influenced by changes in the
optimal controls when the perturbation vector is zero.25 As a result, for each control
vector g ¼ 1 � � � p, there are q2 equations for each element of the variance–covariance
matrix.

u
g
J ½ŷ

LR
t ; zt;SLR

t ; 0� ¼ � ½Et½Pa;g½u
LR
t ; yLR

t ; zt; 0� þ bV ik½ŷ
LR
tþ1; ztþ1;SLR

tþ1; 0�F
i
aFk

g ��
�1

�½Et½bV iK ½ŷ
LR
tþ1; ztþ1;SLR

tþ1; 0�F
i
aG

K
J ��, ð12Þ

where the inverse refers to the inverse tensor matrix.26 This system of equations
may be formulated as a system of p� q2 equations which can be solved for
all the partial derivatives qua=qStJ . When the matrix of this system of equations
is negative definite, then the problem has an interior solution so that the
bang–bang solution of Balvers and Cosimano (1993), etc. is not present in
the approximation. This condition is identical to the condition in Theorem 6
of Jin and Judd (2002) that the operator is invertible in the neighborhood of the
LR problem.

By substituting (12) into (8) the linear approximation of the optimal controls is
complete. Examination of (12) reveals that the variance–covariance matrix
for the hidden state variables influences the decisions of the agent through its
influence on the value function for the agent’s problem. The chain rule implies
that there are two parts to this effect. First, the change in uncertainty changes
the variance–covariance matrix through the Kalman filter, GK

J . Next the
variance–covariance matrix impacts the evaluation of how the control vector
influences the marginal future value of the state vector, ViK F i

a. Both of these
effects are manifested through the change in uncertainty on the marginal value of the
state vector, V iK based on (11). These effects work through the impact on the value
function in this respect the results are similar to Ito’s lemma in continuous time
stochastic control.
25Eq. (12) is derived in Appendix A.
26See Judd (1998, p. 500).
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The stability of the optimal experimentation problem can also be examined by
substituting the optimal solution (8) into the equation of motion for the state vectors.

ytþ1

ztþ1

vec½Stþ1 � SLR
tþ1�

0
BB@

1
CCA

¼

Ayy � By½F y þ R�1W 0
y� Ayz � By½Fz þ R�1W 0

z� Byu
g
J

0 Azz 0

0 0 GJ
I

0
BB@

1
CCA

�

yt

zt

vec½St � SLR
t �

0
BB@

1
CCAþ

Gyy Gyz

0 Gzz

0 0

0
BB@

1
CCA wytþ1

wztþ1

 !
.

Here both elements u
g
J and GJ

I are evaluated at ½ŷLR
tþ1; ztþ1;SLR

tþ1; 0� and are stacked in
conformable matrices. The last line is added to the original closed loop system of the LR
problem, xtþ1 ¼ ½A� BF �xt þ Gw1tþ1, because the variance–covariance matrix now
influences the optimal decision and is part of the state vector. This last line is the first
order approximation of the equation of motion for the variance–covariance matrix, G,
in the neighborhood of the LR problem. From the stability analysis of the LR problem
the conditions for ½A� BF � being stable are already known. Now the new matrix for the
closed loop system is a triangular matrix. As a result, the only additional conditions are
that the eigenvalues of the matrix formed by GJ

I need to be less than one which was used
to assure the stability of (10) and (11). However, Ljungqvist and Sargent (2000, pp.
650–652) demonstrate that the Kalman filter is the dual to the LR problem. Thus, a
similar set of conditions assure that the closed loop for the optimal experimentation
problem in the neighborhood of the LR problem is stable.

In summary, the perturbation of the optimal experimentation problem in the
neighborhood of the LR problem is well defined. First, we know the primitives
such as the Kalman Filter are analytical. Second, we know the solution is unique
as long as the matrix formed by the elements ½Et½Pa;g½u

LR
t ; yLR

t ; zt; 0� þ
bV ik½ŷ

LR
tþ1; ztþ1;SLR

tþ1; 0�F
i
aFk

g �� is negative definite in the neighborhood of the LR
problem. Finally, we know that the closed loop system of the optimal experimenta-
tion problem in the neighborhood of the LR problem is stable as long as the matrix
½A� BF � is stable. Thus, (8) represents the first order approximation of the optimal
experimentation problem in the neighborhood of the LR problem.
6. An example

Balvers and Cosimano (1990) use optimal experimentation to explain the slow
adjustment of prices for a firm with some monopoly power. Subsequently, Cosimano
et al. (2002) apply this argument to a bank to explain the slow adjustment of loan
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and deposit rates to changes in the treasury bill rate. The presence of monopoly
power can be rationalized based on switching cost for the bank’s customers along the
lines of Klemperer (1995). The switching cost implies that the demand for loans is
dependent on market share. The market share is represented by the presence of
lagged loans and deposits in the demand for loans and supply of deposits,
respectively. The demand for loans is also dependent on the bank’s rate relative to
the average loan rate in the market. The supply of deposits is also dependent on the
relative deposit rate.27

These generalizations of the original Balvers and Cosimano model yields an
optimal experimentation problem in which there are two control variables, eleven
state variables including lagged dependent variables, and two signals used to
estimate four parameters. Yet, the solution can be approximated quickly on a
standard computer.

The bank sees the demand for loans

Lt ¼ l0;t þ l1Lt�1 � l2;t½r
L
t;i � rLt � þ �t;1

and the supply of deposits

Dt ¼ d0;t þ d1Dt�1 þ d2;t½r
D
t;i � rDt � þ �t;2.

Here, define Lt as the demand for loans by the ith bank at time t; �t;1 is the random
change in the demand for loans for the ith bank at time t28; rLt;i is the ith bank’s loan
rate at time t; rLt � ð1=ðN � 1ÞÞ

PN
j¼1;jai rLt;j is the average loan rate in the bank’s

market at time t excluding this institution, where N is the number of competitor
banks; Dt represents the supply of deposits to the ith bank at time t; rDt;i is the ith
bank’s deposit rate at time t; �t;2 is the random change in the supply of deposit for the
ith bank at time t; rDt � ð1=ðN � 1ÞÞ

PN
j¼1;jai rDt;j is the average deposit rate in the

bank’s market at time t excluding this institution.
The bank observes the quantity of loans and deposits but does not know the true

slope and intercepts for the demand for loans and supply of deposits. The intercepts
are autoregressive to represent the consumers who are not sensitive to changes in
interest rates. In particular, l0;t ¼ l0 þ a11l0;t�1 þ �t;3 and d0;t ¼ d0 þ a22d0;t�1 þ �t;4,
while the slopes are given by l2;t ¼ l2 þ �t;5 and d2;t ¼ d2 þ �t;6. As a result, the bank
sees the two signals

s1 ¼ l0;t � tL�t;5ðr
L
t;i � rLt Þ þ �t;1 and s2 ¼ d0;t � tD�t;6ðr

D
t;i � rDt Þ þ �t;2.
27See Varian (1980) for a model of monopolistically competitive market in which a distribution in price

represents an equilibrium strategy. The model only represents the decision problem of an individual bank

for simplicity. McGrattan (1994) could be used to introduce strategic considerations but this would be

beyond the scope of this paper.
28The normality assumption cannot be strictly true since the demand for loans could be negative. To

avoid this possibility the normality assumption could be dropped, as long as, the bank cares about the

mean and variance of the state variables. See Ljungqvist and Sargent (2000) for the derivation of the

Kalman Filter under this case.
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The bank chooses loan and deposit rates which maximize profits per period:

ðrLt;i � rt � CL
t ÞLt þ ðrtð1� aÞ � rDt;i � CD

t ÞDt,

subject to the demand for loans and the supply of deposits. The rt is the treasury bill
rate; a is the reserve ratio and CL

t , CD
t are the marginal resource cost of loans and

deposits, respectively. These marginal resource costs are assumed constant for simplicity.
The control vector is ut � ðr

L
t;i rDt;iÞ

0, the endogenous state vector is yt �

ðCL
t CD

t Lt�1 Dt�1 l0;t d0;tÞ
0 and the exogenous state vector is

zt � ðr
L
t rDt rCt rt 1Þ0. The equations of motion for the parameters, l0;t and d0;t, the

bank wants to learn are included in the endogenous state vector. The interest rate on
checking accounts, rCt is added to the vector of exogenous variables since it is statistically
significant in the VAR estimates. The matrices in the augmented LR problem are

R �
l2 0

0 d2

 !
; W 0

z �
�l2 0 0 �l2 0

0 �d2 0 �d2ð1� aÞ 0

 !
;

W 0
y �

�l2 0 �l1 0 �1 0

0 d2 0 d1 0 1

 !
;

Azz has roots less than one;

Qyy �
1

2

0 0 l1 0 1 0

0 0 0 d1 0 1

l1 0 0 0 0 0

0 d1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; Qzz �

1

2

0 0 0 l2 0

0 0 0 0 d2ð1� aÞ

0 0 0 0 0

l2 0 0 0 0

0 d2ð1� aÞ 0 0 0

0
BBBBBB@

1
CCCCCCA
;

Qyz �
1

2

l2 0 0 0 0

0 �d2 0 0 0

0 0 0 l1 0

0 0 0 �d1ð1� aÞ 0

0 0 0 1 0

0 0 0 �ð1� aÞ 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; Ayy �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 l1 0 1 0

0 0 0 d1 0 1

0 0 0 0 a11 0

0 0 0 0 0 a22

0
BBBBBBBBB@

1
CCCCCCCCCA
;

Ayz �

0 0 0 0 0

0 0 0 0 0

l2 0 0 0 0

0 �d2 0 0 0

0 0 0 0 l0

0 0 0 0 d0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; By �

0 0

0 0

�l2 0

0 d2

0 0

0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;
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Gyy �

0 0 0 0 0 0

0 0 0 0 0 0

0 0 s1 0 s3 0

0 0 0 s2 0 s4

0 0 0 0 s3 0

0 0 0 0 0 s4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

Csy �
0 0 0 0 1 0

0 0 0 0 0 1

 !
; Csz and D are zero.

H �
s1 0

0 s2

 !
; V 3 ¼ V4 �

s25 0

0 s26

 !
,

V 05 �
s21 0 0 0 0 0

0 s22 0 0 0 0

 !
:29

The parameter values for this model are listed in Table 1. The parameter
estimates are based on monthly data from 1993 to 1999 which was taken from a
financial institution in a large metropolitan area.30 Loan commitments are
used for the loan demand and savings accounts are used for deposits. Both
accounts are highly persistent with the expected dependence on the spread
between bank rates and market rates for the metropolitan area. The exogenous
state variable, zt, is represented by the VAR model in Tables 2 and 3 which
are used to construct the matrices Azz and Gzz. This state vector includes
the market rates for loan commitments-rL, savings deposit-rD, interest bearing
checking accounts-rC, treasury bill rate-r and the constant. One month lag in
each of the interest rate variables was sufficient to generate white noise
errors.

The first step of the simulation procedure is to implement the doubling algorithm
of Hansen and Sargent (1998) and Anderson et al. (1996). This procedure generates
the LR solution. The behavior of the bank’s loan rate relative to the market loan rate
is portrayed in Fig. 1 by the squares while the triangles represent the market rates.
The bank’s deposit rate over 30 months is given in Fig. 2. For these simulations 11
random draws from the normal distribution each month were used to generate the
movement in the state vector, xt from month to month. The first month is an initial
value for the state vector which approximates a steady state. In Table 4 the state
vectors for the first and sixth month are recorded for the LR problem in columns 2
and 4. The optimal loan and deposit rate for the bank are listed in Table 5 in
29The stochastic specification is slightly different since there is a variance–covariance matrix, V5,

between w1tþ1 and w2t. This causes the Kalman filter to change by replacing AStC
0 with AStC

0 þ V5.
30Rich Sheehan provided these estimates.
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Table 2

VAR for exogenous state vector

State variable rL rD rC r Constant

rL 0.5512 �0.5415 0.5000 0.2785 0.0470

rD 0.0172 0.6793 0.4354 0.0367 �0.00218

rC �0.01459 0.0527 0.9075 0.0400 �0.0006

r 0.0352 �0.9238 1.2885 0.8467 0.0094

Table 1

Parameters

Variable Value Standard deviation Value

l0 4:8601 	 104 s1 1:4436 	 106

a11 0.9000 s2 1:2017 	 107

d0 2:1029 	 105 s3 5:9955 	 105

a22 0.9000 s4 7:4062 	 105

l1 0.9946 s5 1:8423 	 108

d1 0.9245 s6 2:1667 	 109

l2 9:0943 	 108

d2 4:3335 	 109

a 0

Table 3

Variance–covariance matrix for VAR

State variable rL rD rC r

rL 2:0177 	 10�5 5:5679 	 10�7 1:1708 	 10�7 4:4902 	 10�9

rD 1:2331 	 10�7 �1:1915 	 10�8 �5:5679 	 10�10

rC 8:2302 	 10�7 1:0038 	 10�9

r 3:27 	 10�6
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columns 2 and 4. The loan rates under both learning and experimentation start
above the market loan rate. The loan rate is about 51 basis points below the market
average rate in the sixth month, while the deposit rate is about 1.6% above the
market average after six months. As a result, there is a tendency for the bank to set
its loan rate below the market rate and the deposit rate above the market rate so as
to expand the bank’s value even though there is no experimentation.

In Table 6 column’s 2 and 4 and Fig. 3 the Kalman gain under learning starts at
about 0.5 for the loan rate and after six months it decreases to near the steady state,
0.3. This decline in the Kalman gain follows from the decline in the conditional
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Table 4

State vector for 1st and 6th month

State variable x1 xLR
1

x6 xLR
6

CL 0.0600 0.0600 0.0600 0.0600

CD 0.0100 0.0100 0.0100 0.0100

L 4:4424 	 107 4:4424 	 107 7:2433 	 107 7:1816 	 107

D 4:4062 	 107 4:4062 	 107 2:6379 	 108 1:9506 	 108

l0;t 1:3108 	 106 1:3108 	 106 5:8149 	 106 5:9149 	 106

d0;t �5:9325 	 107 �5:9325 	 107 �3:1834 	 107 �3:3592 	 107

rL 0.1177 0.1177 0.1237 0.1237

rD 0.0238 0.0238 0.0231 0.0231

rC 0.0129 0.0129 0.0122 0.0122

r 0.0542 0.0542 0.0538 0.0538

Constant 1 1 1 1

Table 5

Control vector for 1st and 6th month

Control variable u1 uLR
1

u6 uLR6

rLi 0.1221 0.1221 0.1196 0.1186

rDi 0.0254 0.0254 0.0394 0.0389

Table 6

Kalman gain for 1st and 6th month

Kalman gain K1 KLR
1

K6 KLR
6

rLi 0.1828 0.4956 0.2591 0.2911

rDi 0.0063 0.4487 0.0016 0.0774
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variance of the loan intercept which can be seen in Fig. 4.31 As the conditional
variance of the constant for loans decreases over the six months, as seen in Table 7
row 2 or Fig. 4, the Kalman gain decreases which increases the convergence of this
conditional variance. The deposit rate exhibits similar patterns for the Kalman filter
accept that the change is more pronounce.
31The initial value of the Kalman gain can be manipulated by changing the variance of the constant

relative to the variance in the regression. By lowering the variance of the constant the conditional variance

of the constant decreases relative to the variance of the regression which leads to a decrease in the Kalman

gain.
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Table 7

Variance for 1st and 6th month

SL
1 SD

1 SL
6 SD

6

Optimal 6:1705 	 1011 9:9127 	 1012 9:2829 	 1011 2:2201 	 1012

LR 2:0474 	 1012 1:1751 	 1013 8:5563 	 1011 1:2122 	 1013
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In Table 8 the marginal value of the state variable, V i is listed. These results are
consistent with intuition. An increase in cost reduces the value of the bank, while an
increase in demand increases its value. In summary, the LR solution behaves in a
consistent and intuitive way.

The conditional variance has a positive impact on the value of the bank in Table 9.
This results from the difference equation (10). The source of the positive sign is the
impact of the variance–covariance matrix on the Kalman Gain, F

j
I . Balvers and

Cosimano (1990) show that the bank has an increasing return to uncertainty in the
intercept. As a result, Jensen’s inequality implies that higher uncertainty leads to an
increase in the value of the bank, VI40.

We also can find the effect of the variance–covariance matrix on the marginal
value of the state vector to the bank, V kI . From the difference equation (11), the sign
of this second derivative is driven by F

j
kI which represents the impact of the

variance–covariance matrix on the marginal effect of the state on the Kalman Gain.
Suppose we look at the diagonal elements of the variance–covariance matrix to
identify the sign of this second order partial derivative. A higher expected value of
the current intercept reduces the value of the signal observed today and this signal is
now multiplied by a larger Kalman gain because of the higher conditional variance
of the intercept. As a result, the diagonal elements of the variance–covariance matrix
have a negative impact on the marginal value of the state vector, V kIo0. Of course,
the diagonal elements could be any sign depending on the covariance between the
signals.

We can now examine the impact of optimal experimentation on the behavior of
the bank. The simulation starts at the same initial values so that the first occurrence
of experimenting is in month 2. This behavior is pictured in Figs. 1 and 2 for the loan
and deposit rates, respectively. The rhombus represents the optimal experimentation.
The loan rate initially goes below the benchmark LR solution by 31 basis points and
goes about nine basis points above by the sixth month. As a result, the bank initially
increases market share with a lower loan rate which the bank takes advantage of
later in time. This decrease in the loan rate increases the uncertainty in the regression
since the loan rate is further below the market rate. Thus, the Kalman Gain
decreases to 0.13 in the second month and converges to the LR value by the 12th
month as seen in Fig. 3. Consequently, the conditional variance for the loan intercept
converges faster to the steady state. The same experimentation occurs for the deposit
rate except that the deposit rate is higher since it is a source of cost rather than
revenue. In addition, the experimentation effect is larger for the deposit rate since the
elasticity of supply for deposits is larger.
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Table 8

Partial derivative of value function with respect to state vector

State variable Vi

CL �1:2817 	 109

CD �5:5622 	 109

L 0.1294

D 0.1114

l0;t 0.7153

d0;t 0.6548

rL 7:8314 	 107

rD �4:2614 	 109

rC �1:0526 	 109

r 1:3554 	 109

Constant 2:4840 	 108

Table 9

VI for 1st and 6th month

1st Month 6th Month

SL
1 1:2730 	 10�9 7:5818 	 10�10

SD
1 4:9437 	 10�10 4:9505 	 10�10
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In Table 10 we can see the effect of the conditional uncertainty on the optimal
decisions of the bank in (12). The increase in the conditional variance of the intercept
leads to a higher conditional variance in the future, GK

J 40. The higher conditional
variance leads to a decrease in the marginal impact of the state vector on the value
function, V iKo0 by (11). This change in the marginal value of the state vector
together with the reduction in the demand for loans because of the higher loan rate,
Fi

ao0 leads to an increase in the loan rate charged by the bank. Thus, the bank
lowers the loan rate, see Fig. 1, when the conditional variance of the intercept under
experimentation is below its value under the LR value, see Fig. 4.

The path of the loan rate in Fig. 1 can now be understood. The conditional
variance of the demand for loan intercept under experimentation is initially below
the LR case in Fig. 4 so that the loan rate is lower. By the sixth month this
conditional variance is higher under optimal experimentation and its marginal
impact on the optimal loan rate has also fallen. As a result, the loan rate is now
slightly above the LR case. This continues till the 20th month when the loan rate is
roughly the same as in the LR case.

The same basic pattern occurs for the deposit rate. The deposit rate first goes
above the LR case by 79 basis points since higher deposit rates increases the
supply of deposits. By the sixth month the spread is down to six basis points.
Again by the 20th month there is no difference between the learning and
experimentation decision.
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Table 10

u
g
J for 1st and 6th month

SL
1 SD1

1 SL
6 SD1

6

rLi 3:4791 	 10�15 0 1:1589 	 10�14 0

rDi 0 �5:3098 	 10�17 0 �5:4152 	 10�16
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These simulations confirm most of the qualitative results of Balvers and Cosimano
(1990). The main new result is that after experimenting for a short period of time, the
optimal loan rate goes above the loan rate under optimal experimenting. This new
insight occurs since it is now possible to analyze optimal experimentation problems
in a setting with changing state variables as well as more complex dynamic LR
problems. In addition, these simulations take less than a minute on a standard PC
with a Pentium II 400MHz chip. The estimation of the parameters of these models
using the method developed by Hansen and Sargent (1998) and Anderson et al.
(1996) would involve the repeated solution of the algorithm as the parameters are
changed to optimize a likelihood function. Thus, it is now feasible to estimate
complex models of optimal experimentation.
7. Conclusion

This paper has developed a procedure for approximating optimal experimentation
problems for the class of augmented LR problems. This procedure uses the perturbation
method of Gaspar and Judd (1997), Judd (1998), and Jin and Judd (2002). The optimal
learning problem within the context of the LR problem is modified by introducing
parameters into the conditional variance–covariance matrix. These parameters
introduce the possibility that either the control variables or the exogenous state vector
can influence this variance–covariance matrix. This parameterization of the optimal
experimentation problem includes all the examples seen in the macroeconomic literature
such as Wieland (2000b, 2002, 2006), as well as more complex problems. When these
parameters are zero, the optimal experimentation problem reduces to the optimal
learning problem which has a well-defined solution. Thus, the perturbation procedure
can be used to find the first order approximation of the optimal decision of the agents
and the second order approximation of the value function.

The optimal decision under experimentation, (8), is a linear combination of the
usual solution found by iterating on the Riccati equation and a term that captures
the effect of uncertainty on the value function of the agent, (11). This second term
uses four matrices as inputs which consist of derivatives of the equations of motion
for the state vector and the conditional variance–covariance matrix from the Kalman
Filter. The formula’s for these matrices are provided in Appendix A. As a result
optimal experimentation can be analyzed for any augmented LR problem. To
implement this program: first define the matrices for your particular problem as in
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Hansen and Sargent (1998). Second, apply the formulas given in Appendix A for the
four matrices in Eqs. (11) and (12). Third, iterate on the first order difference
equation, (11), to measure the impact of the conditional variance–covariance matrix
on the marginal value of each state variable. The final step implements Eq. (12),
which yields the effect of optimal experimentation on the optimal decision of the
agent. Cosimano and Gapen (2006) implements this algorithm to approximate
optimal experimentation in the neighborhood of any augmented LR problem.

Implementation of this algorithm allows for the empirical evaluation of optimal
experimentation on the optimal decisions of agents. Once the optimal decision for a
particular problem is known, such as the optimal loan and deposit rate decisions
found in Section 6, the estimation procedure of Anderson et al. (1996) and Hansen
and Sargent (1998) can be modified by replacing the LR solution with the optimal
experimentation solution. The estimates of the underlying parameters are found by
optimizing the likelihood function built on this algorithm. It is feasible to estimate
the effect of experimentation since each iteration on this algorithm takes less than a
minute on a standard PC. Thus, the impact of optimal experimentation on optimal
decisions of agents can be accomplished for a large class of applied economic
problems outlined by Hansen and Sargent (1998).
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Appendix A

A.1. Derivatives of F

Let ut have dimension p� 1, yt have dimension q� 1, zt have dimension r� 1, and
at have dimension s� 1. The matrices have the dimensions so that product is well
defined.

qF

qut

¼ vecð½B0y; 0
0�Þ þ vec

qKtat

qut

; 00
� �� �

:32
32See Theorem 6.3, p. 43 and item 4, p. 50 of Rogers (1980).
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Ktat is dependent on Vt. As a result, look at

qVt

qut

¼
qt1u0t
qut

V 3utt01 þ ðt1u
0
t � IpÞðV 3 � IpÞ

qutt01
qut

,

which is zero for t1 ¼ 0.33 Thus, qKtat=qut ¼ 0, so that qF=qut ¼ vecð½B0y; 0
0�Þ.

qF

qŷt

¼ vecð½A0yy; 0
0�Þ þ vec

qKtat

qŷt

; 00
� �� �

,

where

q
Ktat

0

� �
qŷt

¼ �
Kt

0

� �
� Iq

� �
ðCsy � IqÞvecðIqÞ:34

Here 0 has dimension r� s. Thus,

qF

qŷt

¼ vecð½A0yy; 0
0�Þ �

Kt

0

� �
� Iq

� �
ðCsy � IqÞvecðIqÞ,

qF

qzt

¼ vecð½A0yz;A
0
zz�Þ þ vec

qKtat

qzt

; 00
� �� �

.

Ktat is dependent on zt through V t, as a result look at

qVt

qzt

¼
qt2z0t
qzt

V 4ztt02 þ ðt2z
0
t � I rÞðV 4 � I rÞ

qztt02
qzt

,

which is zero for t2 ¼ 0. Thus, qKtat=qzt ¼ 0, so that qF=qzt ¼ vecð½A0yz;A
0
zz�Þ.

qF

qSt

¼

qKtat

qSt

0

0
@

1
A,

where 0 has dimension qr� q. Ktat is the product of three matrices X � AyyStC
0
sy,

Y � ðCsyStC
0
sy þHH 0Þ�1 and Z � at. By the product rule for differentiation of

matrices35

qKtat

qSt

¼
qX

qSt

ðY � IqÞðZ � IqÞ þ ðX � IqÞ
qY

qSt

ðZ � IqÞ.

Next,

qX

qSt

¼
qAyyStC

0
sy

qSt

¼ vecðA0yyÞvecðC0syÞ
0; 36
33See Theorem 6.4 from Rogers (1980, p. 43).
34See item 16, Rogers (1980, p. 53).
35at is not dependent on St.
36See item 13, Rogers (1980, p. 52).

Please cite this article as: Cosimano, T.F., Optimal experimentation and the perturbation method in

the.... Journal of Economic Dynamics and Control (2007), doi:10.1016/j.jedc.2007.03.009

dx.doi.org/10.1016/j.jedc.2007.03.009


37

ARTICLE IN PRESS

T.F. Cosimano / Journal of Economic Dynamics & Control ] (]]]]) ]]]–]]]32
which has dimension q2 � qs.

qY

qSt

¼ �ððCsyStC
0
sy þHH 0Þ�1 � IqÞvecðC0syÞvecðCsyÞ

0
ððCsyStC

0
sy þHH 0Þ�1 � IqÞ;

which has dimension sq� sq.

qKtat

qSt

¼ vecðA0yyÞvecðC0syÞ
0
ððCsyStC

0
sy þHH 0Þ�1 � IqÞðat � IqÞ

� ðAyyStC
0
sy � IqÞððCsyStC

0
sy þHH 0Þ�1 � IqÞ

�vecðC0syÞvecðCsyÞ
0
ððCsyStC

0
sy þHH 0Þ�1 � IqÞðat � IqÞ.

Next look at the effect of the perturbation vector

qF

qt1
¼

qKtat

qt1
0

0
@

1
A.

Ktat is dependent on t1 through Vt, as a result look at

qVt

qt1
¼

qt1u0t
qt1

V 3utt01 þ ðt1u
0
t � IpÞðV 3 � IpÞ

qutt01
qut

,

which is zero for t1 ¼ 0. Thus, qKtat=qt1 ¼ 0, so that qF=qt1 ¼ 0. It also follows
immediately that qF=qt2 ¼ 0.

Now turn to the second order derivatives.

q2F
qutqSt

¼

q2Ktat

qutqSt

0

0
@

1
A.

qV t=qut is independent of St so that all the terms in this second order derivatives are
dependent on this derivative. Thus, q2F=qutqSt ¼ 0.

q2F

qytqSt

¼ �

q
Kt � Iq

0� Iq

 !

qSt

½ðCsy � IqÞVecðIqÞ � Is�

¼ �
ðI ðq;qÞ � IqÞ Iq �

qKt

qSt

� �
ðI ðs;qÞ � IqÞ

0

0
B@

1
CA½ðCsy � IqÞVecðIqÞ � Iq�; 38

where I ðs;qÞ is the commutation matrix and 0 has dimension q2r� q2. The partial
derivative is

qKt

qSt

¼ ½vecðA0yyÞ � ðKt � IqÞvecðC0syÞ�vecðCsyÞ
0
ððCsyStC

0
sy þHH 0Þ�1 � IqÞ

¼ ½vecðA0yyÞ � vecðCsyK 0tÞ�vecðCsyÞ
0
ððCsyStC

0
sy þHH 0Þ�1 � IqÞ:39
37See item 4, Rogers (1980, p. 50).
38See Theorem 6.6 of Rogers (1980, p. 45).
39By Theorem 4.1 of Rogers (1980, p. 21), vecðXYZÞ ¼ ðZ0 �X ÞvecðY Þ.
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The final second order derivative is

q2F

qS2
t

¼

q2Ktat

qS2
t

0

0
B@

1
CA,

where 0 has dimension q2r� q2.
Let S � ðI ðq;sÞ � IqÞðIq � qðCsyStC

0
sy þHH 0Þ�1=qStÞðI ðs;qÞ � IqÞ and T � ðI ðq;qÞ �

IqÞ � ðIq � vecðA0yyÞvecðC0syÞ
0
ÞðI ðs;qÞ � IqÞ so that

q2Ktat

qS2
t

¼ ½vecðA0yyÞvecðC0syÞ
0
� Iq�S½ðat � IqÞ � Iq�

� T ½ððCsyStC
0
sy þHH 0Þ�1 � IqÞ � Iq�

�½ðvecðC0syÞvecðC0syÞ
0
ððCsyStC

0
sy þHH 0Þ�1at � IqÞÞ � Iq�

� ½ðAyyStC
0
sy � IqÞ � Iq�S

�½ðvecðC0syÞvecðC0syÞ
0
ððCsyStC

0
sy þHH 0Þ�1at � IqÞÞ � Iq�

� ½ðAyyStC
0
sy � IqÞððCsyStC

0
sy þHH 0Þ�1 � IqÞ � Iq�

�½½vecðC0syÞvecðC0syÞ
0
� Iq�S½ðat � IqÞ � Iq��,

where the partial derivative in S is calculated above in qY=qSt.
A.2. Derivatives of G

ut, zt, and t only effect G through the Kalman Gain which in turn is influenced by
V t. As a result qG=qut, qG=qzt and qG=qt are all zero. Next,

qG

qSt

¼ vecðA0yyÞvecðA0yyÞ
0

� vecðA0yyÞvecðC0syÞ
0
½ðCsyStC

0
sy þHH 0Þ�1 � Iq�½CsyStA

0
yy � Iq�

þ ½AyyStC
0
sy � Iq�ððCsyStC

0
sy þHH 0Þ�1 � IqÞvecðC0syÞvecðCsyÞ

0

�ððCsyStC
0
sy þHH 0Þ�1 � IqÞ½CsyStA

0
yy � Iq�

� ½AyyStC
0
sy � Iq�½ðCsyStC

0
sy þHH 0Þ�1 � Iq�vecðC0syÞvecðA0yyÞ

0.

Let U � ðI ðq;sÞ � IqÞðIq � vecðC0syÞvecðA0yyÞ
0
ÞðI ðq;qÞ � IqÞ so that the second order

partial derivative is

q2G

qS2
t

¼ � ½vecðA0yyÞvecðC0syÞ
0
� Iq�S½ðCsyStA

0
yy � IqÞ � Iq�

� ½ðvecðA0yyÞvecðC0syÞ
0
½ðCsyStC

0
sy þHH 0Þ�1 � Iq�Þ � Iq�U

� T ½ðððCsyStC
0
sy þHH 0Þ�1 � IsÞvecðC0syÞvecðCsyÞ

0
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�ððCsyStC
0
sy þHH 0Þ�1 � IsÞ½CsyStA

0
yy � Iq�Þ � Iq�

þ ½½AyyStC
0
sy � Iq� � Iq�

�fS½ðvecðC0syÞvecðCsyÞ
0
ððCsyStC

0
sy þHH 0Þ�1 � IqÞÞ � Iq�

þ ½ðððCsyStC
0
sy þHH 0Þ�1 � IqÞvecðC0syÞvecðCsyÞ

0
Þ � Iq�Sg

�½½CsyStA
0
yy � Iq� � Iq�

þ fð½AyyStC
0
sy � Iq�ððCsyStC

0
sy þHH 0Þ�1 � IqÞvecðC0syÞvecðCsyÞ

0

�ððCsyStC
0
sy þHH 0Þ�1 � IqÞÞ � IqgU

� T ½ð½ðCsyStC
0
sy þHH 0Þ�1 � Iq�vecðC0syÞvecðA0yyÞ

0
Þ � Iq�

� ½½AyyStC
0
sy � Iq� � Iq�S½vecðC0syÞvecðA0yyÞ

0
� Is�.

A.3. Derivation of (11)

The second order effects on the value function are calculated by taking the total
differentiation of (10) with respect to the qþ r state variables to yield qþ r difference
equations for each variance–covariance term

V Ik½ŷt; zt;St; t�

¼ Et½bVjl ½ŷtþ1; ztþ1;Stþ1; t�ðFl
k½ut; ŷt; zt;St; t� þ Fl

a½ut; ŷt; zt;St; t�ua
k½ŷt; zt;St; t�Þ

�F
j
I ½ut; ŷt; zt;St; t� þ bVjL½ŷtþ1; ztþ1;Stþ1; t�ðGL

k ½ut; zt;St; t�

þ GL
a ½ut; zt;St; t�ua

k½ŷt; zt;St; t�ÞF
j
I ½ut; ŷt; zt;St; t�

þbV Jl ½ŷtþ1; ztþ1;Stþ1; t�ðFl
k½ut; ŷt; zt;St; t� þ Fl

a½ut; ŷt; zt;St; t�uak½ŷt; zt;St; t�Þ

�GJ
I ½ut; zt;St; t� þ bV JL½ŷtþ1; ztþ1;Stþ1; t�ðGL

k ½ut; zt;St; t�

þ GL
a ½ut; zt;St; t�ua

k½ŷt; zt;St; t�ÞGJ
I ½ut; zt;St; t�

þ bV j½ŷtþ1; ztþ1;Stþ1; t�ðF
j
Ik½ut; ŷt; zt;St; t�

þ F
j
Ia½ut; ŷt; zt;St; t�ua

k½ŷt; zt;St; t�Þ þ bV J ½ŷtþ1; ztþ1;Stþ1; t�ðGJ
Ik½ut; zt;St; t�

þ GJ
Ia½ut; zt;St; t�ua

k½ŷt; zt;St; t�Þ�.

If the perturbation vector is set equal to zero, then by Lemma 1 this equation
becomes (11). In these calculations, use the result that Et½F

j
I � is zero, since Et½at� ¼ 0.

A.4. Derivation of VIJ

The second order partial derivatives of the value function with respect to the
elements of the variance–covariance matrix satisfies

V IJ ½ŷt; zt;St; t�

¼ Et½bVjl ½ŷtþ1; ztþ1;Stþ1; t�ðFl
J ½ut; ŷt; zt;St; t� þ Fl

a½ut; ŷt; zt;St; t�uaJ ½ŷt; zt;St; t�Þ

�F
j
I ½ut; ŷt; zt;St; t� þ bVjL½ŷtþ1; ztþ1;Stþ1; t�ðGL

J ½ut; zt;St; t�
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þ GL
a ½ut; zt;St; t�ua

J ½ŷt; zt;St; t�ÞF
j
I ½ut; ŷt; zt;St; t� þ bV j½ŷtþ1; ztþ1;Stþ1; t�

�ðF
j
IJ ½ut; ŷt; zt;St; t� þ F

j
Ia½ut; ŷt; zt;St; t�ua

J ½ŷt; zt;St; t�Þ

þbVKl ½ŷtþ1; ztþ1;Stþ1; t�ðFl
J ½ut; ŷt; zt;St; t� þ Fl

a½ut; ŷt; zt;St; t�uaJ ½ŷt; zt;St; t�Þ

�GK
I ½ut; zt;St; t� þ bV KL½ŷtþ1; ztþ1;Stþ1; t�ðGL

J ½ut; zt;St; t�

þ GL
a ½ut; zt;St; t�ua

J ½ŷt; zt;St; t�ÞGK
I ½ut; zt;St; t� þ bVK ½ŷtþ1; ztþ1;Stþ1; t�

�ðGK
IJ ½ut; zt;St; t� þ GK

Ia½ut; zt;St; t�ua
J ½ŷt; zt;St; t�Þ�.

These second order partial derivatives are dependent on ua
J ½ŷt; zt;St; t�, however, it

will turn out that these partial derivatives can be calculated independent of VIJ when
the perturbation vector is zero. Once this is complete, the V IJ may be stacked into a
q4 � 1 vector to yield a first order linear difference equation in VIJ ½ŷ

LR
t ; zt;SLR

t ; 0�.
A.5. Derivation of (12)

To find (12) first take the total differentiation of the Euler condition with respect
to St for each control variable a

Et½Pa;g½ut; yt; zt; t�u
g
J ½ŷt; zt;St; t�

þbV ik½ŷtþ1; ztþ1;Stþ1; t�Fi
a½ut; ŷt; zt;St; t�ðFk

J ½ut; ŷt; zt;St; t� þ Fk
g ½ut; ŷt; zt;St; t�

�u
g
J ½ŷt; zt;St; t�Þ þ bV iK ½ŷtþ1; ztþ1;Stþ1; t�Fi

a½ut; ŷt; zt;St; t�ðGK
J ½ut; zt;St; t�

þ GK
g ½ut; zt;St; t�u

g
J ½ŷt; zt;St; t�Þ þ bV i½ŷtþ1; ztþ1;Stþ1; t�ðF i

aJ ½ut; ŷt; zt;St; t�

þ F i
ag½ut; ŷt; zt;St; t�u

g
J ½ŷt; zt;St; t�Þ þ bVIk½ŷtþ1; ztþ1;Stþ1; t�GI

a½ut; zt;St; t�

�ðFk
J ½ut; ŷt; zt;St; t� þ Fk

g ½ut; ŷt; zt;St; t�u
g
J ½ŷt; zt;St; t�Þ

þ bVIK ½ŷtþ1; ztþ1;Stþ1; t�GI
a½ut; zt;St; t�ðGK

J ½ut; zt;St; t� þ GK
g ½ut; zt;St; t�

�u
g
J ½ŷt; zt;St; t�Þ þ bV I ½ŷtþ1; ztþ1;Stþ1; t�ðGI

aJ ½ut; zt;St; t�

þ GI
ag½ut; zt;St; t�u

g
J ½ŷt; zt;St; t�Þ�.

This equation can be solved for ua
J to yield

ua
J ½ŷt; zt;St; t� ¼ � fEtðPa;g½ut; yt; zt; t�

þ bV ik½ŷtþ1; ztþ1;Stþ1; t�Fi
a½ut; ŷt; zt;St; t�F k

g ½ut; ŷt; zt;St; t�

þ bV iK ½ŷtþ1; ztþ1;Stþ1; t�Fi
a½ut; ŷt; zt;St; t�GK

g ½ut; zt;St; t�

þ bV i½ŷtþ1; ztþ1;Stþ1; t�Fi
ag½ut; ŷt; zt;St; t�

þ bV Ik½ŷtþ1; ztþ1;Stþ1; t�GI
a½ut; zt;St; t�Fk

g ½ut; ŷt; zt;St; t�

þ bV IK ½ŷtþ1; ztþ1;Stþ1; t�GI
a½ut; zt;St; t�GK

g ½ut; zt;St; t�

þ bV I ½ŷtþ1; ztþ1;Stþ1; t�GI
ag½ut; zt;St; t�g�1

�fEt½bV ik½ŷtþ1; ztþ1;Stþ1; t�Fi
a½ut; ŷt; zt;St; t�F k

J ½ut; ŷt; zt;St; t�
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þ bViK ½ŷtþ1; ztþ1;Stþ1; t�F i
a½ut; ŷt; zt;St; t�GK

J ½ut; zt;St; t�

þ bVi½ŷtþ1; ztþ1;Stþ1; t�F i
aJ ½ut; ŷt; zt;St; t�

þ bVIk½ŷtþ1; ztþ1;Stþ1; t�GI
a½ut; zt;St; t�F k

J ½ut; ŷt; zt;St; t�

þ bVIK ½ŷtþ1; ztþ1;Stþ1; t�GI
a½ut; zt;St; t�GK

J ½ut; zt;St; t�

þ bVI ½ŷtþ1; ztþ1;Stþ1; t�GI
aJ ½ut; zt;St; t��g.

Equation for ua
J in the text is found by using Lemma 1 to evaluate the partial

derivatives at the LR solution. JJ

A.6. Proof of VI ¼ 0 and u
g
I ¼ 0

For each of the perturbation parameters in the vector, t,

VI½ŷt; zt;St; t� ¼Et½PI½ut; yt; zt; t� þ bV j½ŷtþ1; ztþ1;Stþ1; t�F
j
I½ut; ŷt; zt;St; t�

þbV J ½ŷtþ1; ztþ1;Stþ1; t�GJ
I½ut; zt;St; t� þ bVI½ŷtþ1; ztþ1;Stþ1; t��.

The partial derivatives, F
j
I and GJ

I, are zero by Lemma 1 when they are evaluated at
the LR solution. The partial derivatives of the variance–covariance terms HH 0 in the
Kalman filter are zero when the perturbation parameters are zero. It follows that
u
g
Iðŷ

LR
t ; zt;SLR

t ; 0Þ ¼ 0 since it is dependent on the partial derivatives F
j
I and GJ

I.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version
at doi:10.1016/j.jedc.2007.03.009.
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