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Abstract

The perturbation method is used to approximate optimal experimentation problems. The
approximation is in the neighborhood of the linear regulator (LR) problem. The first order
perturbation of the optimal decision under experimentation is a combination of the LR
solution and a term that captures the impact of the uncertainty on the agent’s value function.
An algorithm is developed in a companion paper to quickly implement this procedure on the
computer. As a result, the impact of optimal experimentation on an agent’s decisions can be
quantified and estimated for a large class of problems encountered in economics.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Economic agents usually find themselves in circumstances in which they have to
maximize their welfare while at the same time they must learn about fundamental
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relations that influence their payoffs. Optimal experimentation arises when the actions of
the agents impact their information set. In these circumstances the agents trade off
optimal control with optimal experimentation. In general these problems are difficult to
solve since the actions of the agents affect the distribution of payoffs. The microeconomic
literature has tended to focus on fixed states and non-linear payoffs. Within this context
researchers have characterized the tradeoffs between myopic behavior and the value of
information. The macroeconomic literature is focused more on changing state variables
with quadratic payoffs. This paper demonstrates how to use the perturbation method to
approximate the solution to experimentation problems found in macroeconomics.

The presence of optimal experimentation leads to stochastic problems with no
closed form solution. However, in the absence of optimal experimentation most
macroeconomic problems are reduced to augmented linear regulator (LR) problems.
In addition, most dynamic general equilibrium models of the economy are
approximated with log linearization methods which turn the model into an LR
problem. These LR problems have well defined solutions which involve iteration on
a Ricatti equation. This opens up the possibility of using perturbation methods to
approximate optimal experimentation problems in the neighborhood of the solution
to LR problems. In this procedure a parameter is introduced in which the optimal
experimentation problem reduces to the LR problem when the parameter is zero.
Subsequently, a Taylor series expansion around the zero value of the parameter is
calculated for the value function and optimal policy rule. In this paper a second
order expansion of the value function and a first order expansion of the policy
function is found. Thus, the dynamic general equilibrium models with optimal
experimentation can be approximated with the perturbation method introduced here
with the same degree of accuracy as log linearization methods.

The next section discusses the relation between this work and research on optimal
experimentation. Section 3 summarizes the procedures to solve LR problems following
Anderson et al. (1996). Section 4 develops the parameterization of the conditional
variance—covariance matrix of the optimal experimentation problem so that this
problem reduces to the Kalman filtering problem when the parameters are set equal to
zero. Section 5 derives the formula for optimal conditions in the presence of a second
order perturbation of the optimal experimentation problem. The stability properties of
this solution are also examined. In Section 6 the analysis of Balvers and Cosimano
(1990) is applied to a bank with some monopoly power that does not know the demand
for loans or the supply of deposits. This example is a generalization of Balvers and
Cosimano in that optimal experimentation for two separate relations is undertaken. In
addition, the state vector includes eleven variables, including lagged dependent variables,
which moves stochastically over time. The results of Balvers and Cosimano are
quantified in that both the loan and deposits rates slowly adjust to changes in market
conditions. The final section concludes the paper.

2. Related literature

Original work on the optimal experimentation for economic problems was carried
out by MacRae (1972, 1975) and Prescott (1971, 1972). Kendrick (2002a, b) discusses
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the role of optimal experimentation in stochastic control problems. He also provides
a comprehensive discussion of earlier developments for this problem. Easley and
Kiefer (1988), Kiefer and Nyarko (1989), Balvers and Cosimano (1990), Aghion et
al. (1991), Trefler (1993), Keller and Rady (1999), Bolton and Harris (1999), and
Moscarini and Smith (2001) are a few of the papers which analyze experimentation
problems in microeconomic settings. Balvers and Cosimano (1994), and Wieland
(2000a, 2006), provide discussions of the literature on optimal experimentation in
macroeconomic problems.

Wieland (2000a) shows how to use value and policy function iteration to examine
the behavior of optimal experimentation problems.! He introduced the optimal
experimentation problem into otherwise static optimization problem.? Within the
context of these problems he was able to identify as much as a 52% increase in the
agent’s value from experimentation.

Extending this procedure to more general problems or using it for the estimation
of experimentation effects is problematic. In the case of a continuous distribution in
which the agent is learning about four state variables Wieland’s computer program
takes about a week to find a solution.”> Wieland (2002) evaluates a more complex
macroeconomic problem in which agents learn about nine state variables. However,
computational time, about 60 h, limits the discussion to pairwise evaluation of the
complete optimal experimentation problem. Subsequently, Wieland (2006) examines
optimal learning about the Phillips curve when there is uncertainty about the natural
rate and the persistence of inflation. In this work it takes about 72 h to solve a model
with five state variables. This limits the application of this procedure to simple
calibration exercises and precludes the estimation of models of optimal experi-
mentation.* In addition, optimal experimenting about multiple parameters or more
complex dynamic settings is prohibitive.

This paper provides an alternative procedure for approximating optimal
experimentation problems which can handle more complex optimal experimentation
problems, as well as the estimation of these problems. This alternative procedure is
based on the perturbation method of Gaspar and Judd (1997), Judd (1998), and Jin
and Judd (2002). This method may be applied when the solution to the problem can
be represented by a Taylor series.” The perturbation method is useful when a more
general problem reduces to a simpler problem under some well-defined circum-
stances. In addition, the simpler problem has a well-developed solution method. The
perturbation method proceeds to introduce parameters such that the general
problem reduces to the simpler problem when these parameters are zero. The more

"Beck and Wieland (2002) use the same technique when the state variable is dependent on one lag of the
dependent variable.

ZBalvers and Cosimano (1990, 1994) and Wieland (2000b) provide examples in which this approach may
be applied.

30ver the years the increased capacity of computers has resulted in a significant reduction in this time.

*Wieland (2000b) provides a good example of a calibration exercise.

3Chen et al. (2005) show that solution to discrete time asset pricing problems can be represented as a
Taylor series when the components of the problem can also be represented by a Taylor series. Such
functions are called analytic.
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general problem is then approximated by taking a Taylor series approximation
around zero values for the perturbation parameters.

In most macroeconomic problems on optimal experimentation the objective is
quadratic and the equations of motions are linear. It is also possible to introduce
parameters which remove the optimal experimentation problem. For example in
Wieland’s (2000b) optimal monetary policy problem the optimal experimentation
issue would not be present when the central bank knows the impact of interest rates
on inflation. Consequently, the optimal experimentation may be removed by
attaching a parameter to the error term for this slope coefficient and setting the
parameter to zero.’

Without the optimal experimentation these problems fall into the general rubric of
LR problem. Also it is traditional in simulations of dynamic general equilibrium
models to use a second order approximation of the value function and a first order
approximation of the equations of motions which turns these models into a LR
problem. For example, one can use the computer algorithm Dynare to do these
approximations. The procedures for solving the LR problems have been developed
by Hansen and Sargent (1998), and Anderson et al. (1996). As a result, one can use
the perturbation method to approximate the optimal decision of an agent in the
presence of experimentation. In this paper the second order perturbation to the
experimentation problem is found in the neighborhood of the LR solution. The
optimal decision starts with the optimal decision found in Anderson et al. Appended
to this decision is a term which captures the effect of the conditional
variance—covariance matrix on the agents’ optimal decisions. Thus, it is now feasible
to examine the impact of optimal experimentation on any dynamic general
equilibrium model.

This additional impact on the optimal decisions of the agent is akin to Ito’s
lemma in continuous time stochastic control problems.” The effect of optimal
experimentation works through the second order effect of the variance—covariance
matrix on the agent’s marginal valuation of each state. This effect may be
decomposed into two parts based on the chain rule. The variance—covariance matrix
first changes how each state variable impacts the equation of motion for the state
variables. This part occurs because this change influences the Kalman gain. The
second part consist of the marginal impact of the state variables on the agent’s
valuation. The perturbation method develops a systematic way to measure these
effect of optimal experimentation which is then added to the optimal decision from
the LR problem.

There are several benefits to this procedure. First, it builds on a well-developed
procedure for handling a large class of economic problems. This class of problems
includes those found in the literature on optimal experimentation, as well as dynamic
general equilibrium models. Second, the procedure can be implemented on a

YA similar set up could be used to apply the perturbation method to Balvers and Cosimano (1990, 1994).

"Keller and Rady (1999), Bolton and Harris (1999), and Moscarini and Smith (2001) provide examples
of an optimal experimentation problem in continuous time. Bensoussan (1992) provides mathematical
analysis of latent variables and stochastic control in continuous time.
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computer in a timely manner.® Finally, by suitably modifying the estimation
procedure of Anderson et al. it is now feasible to estimate optimal decision rules of
agents in the presence of optimal experimentation. For example Sargent (1999)
develops an optimal monetary control problem which fits into the Anderson et al.
framework.’ This optimal monetary control problem is a more general version of
Wieland (2000b). Thus, it would be feasible to estimate an optimal central bank
reaction function in the presence of optimal experimentation.

The main drawback of this procedure is that it assumes that the value function and
optimal decisions are differentiable in the neighborhood of the LR solution.
Otherwise a Taylor series is not well defined for the solution. There are at least three
reasons found in the literature when the value or policy functions are not
differentiable. First, Balvers and Cosimano (1993) develop an example in which
the objective of the agent is convex. Earlier, Easley and Kiefer (1988) showed that
the value function is convex in the conditional distribution of the shocks. As a result,
the Bellman equation is convex. Thus, the optimal decision is a corner solution.
Balvers and Cosimano show that the value function is not differentiable when the
agents switches between corner solutions. This problem would not occur when the
one period reward function is sufficiently concave relative to the convex effect of
experimentation.'® This condition may be checked in the perturbation method by
examining whether a particular matrix is negative definite in the neighborhood of the
LG solution."" Next, Santos (1994) shows that the policy function also fails to be
differentiable when the dynamics are such that the system converges to a corner
solution. This problem can be identified by examining the stability of the system of
equations as in Section 5.

Finally, Keller and Rady (1999) and Wieland (2000a) show that the value and
policy functions are not differentiable when the agent has incorrect limit beliefs.
Following Kiefer and Nyarko (1989), Wieland identifies three properties of limit
beliefs and optimal decisions. First beliefs must be self-reinforcing. Second, given the
limit beliefs the reward function should be optimized. Third, if the control variable is
held constant, the agent would learn the mean value of the latent variables. The
possible solution to these conditions are incorrect when the expected values of the
latent parameters do not converge to their true value. In the simulations Keller and
Rady (1999), and Wieland (2000a) find that the value function and optimal decisions
are not differentiable when the latent parameter corresponds to an incorrect limit
belief. Thus, the procedure needs to avoid these possibilities.

8The computer program for this paper is tailored to the specific example. Subsequently, Cosimano and
Gapen (2006) have developed a computer algorithm in Matlab which can be applied to any log-linearize
dynamic general equilibrium model. Running this algorithm takes a few seconds on a standard PC.

“Wieland’s (2002) model of monetary policy under uncertainty about the natural rate of unemployment
and Woodford’s (2002) model of imperfect common knowledge could also fit within this class of models.

K eller and Rady (1999) analyze a similar problem when the agent’s objective is concave. In this case
corner solutions arise when the experimentation effect is dominant. However, in this continuous time case
the value function is differentiable.

"'"This matrix is effectively an approximation of the Hessian matrix for the Bellman equation.
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In Cosimano and Gapen (2006) the model of Beck and Wieland (2002) is
simulated using the computer algorithm which implements the perturbation method
developed here. Kendrick (2006) is also working on simulating the Beck and Wieland
model to identify the cost and benefits of his procedure, developed in Kendrick
(2002a), relative to the other procedures. Cosimano and Gapen find that the
perturbation method and dynamic programming method provide the same solution
when there is no discontinuity in the optimal control. However, the perturbation
method cannot pick up the circumstance in the Beck and Wieland model associated
with incorrect limiting beliefs. As a result, the dynamic programming methods of
Wieland (2000a) must be used to help identify regions of incorrect limiting beliefs.
Under such circumstances the use of the perturbation method is inappropriate.

Using the perturbation method in the neighborhood of the LR problem to
approximate optimal experimentation problems fails to capture the convergence to
incorrect limit beliefs and the convergence to corner solutions. The reason is that
perturbation methods provides an approximations within the neighborhood of the
LR problem so that it is only a local solution. Starting with Marcet and Sargent
(1989) the literature on optimal learning has developed conditions under which the
learning procedure converges to the true parameter values.'> Hansen and Sargent
(1998) use the Kalman filtering procedure to represent optimal learning in stochastic
LR problems. They also show that the Kalman filtering procedure is the dual for the
LR problem. As a result, the conditions for the convergence of the Kalman filter are
similar to those for a stable LR problem. As a result, the perturbation is going to
mimic the convergence behavior of the LR problem (optimal learning), since it
approximates the optimal experimentation problem only in a neighborhood of this
problem.

Under the perturbation method the optimal control solution cannot be separated
from the experimentation problem since the first order perturbation of the optimal
experimentation problem is dependent on the spread between the variance—covar-
iance matrix under optimal experimentation and learning, respectively. In the
analysis here the system of difference equations for both the closed loop system for
the state vector and the equation of motion for the variance—covariance matrix are
found in the neighborhood of the LR solution. Because the equation of motion for
the variance—covariance matrix is not a function of the state vector, the system is
upper triangular. This means that the conditions for the stability for the closed loop
system and the Kalman filter are sufficient for the stability of the system.

In this paper the optimal experimentation problem is approximated by developing
a parameterization which collapses the optimal experimentation problem to the
optimal learning problem in LR problems. These conditions would rule out
problems raised by Santos (1994). In addition, when beliefs converge, the
expectation of the latent parameter will satisfy the mean prediction property.

2In optimal learning problems the agent’s actions do not affect the information used to update forecast,
while it does under optimal experimentation. See Evans and Honkapohja (2001) for a detail survey and
discussion of the work on optimal learning. The recent special issue of this journal edited by Orphanides
and Williams (2005) contains recent contributions to this literature.
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In addition, the LR problem will be optimized. The difference is that the Kalman
gain will be smaller so that the conditional variance—covariance matrix will converge
faster to its steady state value. Thus, the perturbation method applied to optimal
experimentation problems in the neighborhood of the optimal learning problem will
converge to correct limit beliefs as long as the LR problem is stable. Consequently,
the approximation to the optimal experimentation problem will not capture the
circumstances in which this problem displays non-differentiability of the value and
policy functions. As a result, the analysis of Jin and Judd can be used to find the
perturbation to the optimal experimentation problem only in the neighborhood of
the LR problem.

This work complements the work on robust control by Hansen and Sargent (2001,
2003, 2004), Brock and Durlauf (2005), and Brock et al. (2003). In these papers
different types of model misspecification are introduced into optimal control
problems. In these papers the policy makers maximize their welfare subject to
uncertainty about the correct model. This maximization is undertaken given that
nature chooses the worst possible model. In the Hansen and Sargent framework
model uncertainty is incorporated into the error specification of the true model. They
show how the solution can be found using Riccati equations which are similar to
those found in the LR problem. It should be feasible in future research to integrate
the Hansen and Sargent model of robust control with the optimal experimentation in
this work. Brock, Durlauf and West also consider more discrete model
misspecification. For example, a RBC and a Neo Keynesian model of economy
imply two distinct ways in which money growth will impact the economy. The model
uncertainty in this paper is distinct from theirs and provides another reason why the
policy maker would be cautious about the appropriate policy to undertake.

3. The LR problem

The perturbation method is used to solve a general experimentation problem by
approximating the problem around a simpler problem with a known solution. In the
optimal experimentation problem the LR problem is taken as the simpler problem.
In this section the LR problem is summarized as well as its solution following
Hansen and Sargent (1998), and Anderson et al. (1996). The agent is assumed to
choose a sequence {u,} to maximize

o0
~E (Z Bl Ry + ¥, 0,0, + 2910y.20 + 2,022+ 20, Wy, + 24, W?Ji%)
t=0

subject to

Yig Ay Ay i n B, n Gyy Gy: Wyt+1
X = = u
. Zt41 0 A:z Zy 0 ' 0 Gz: Wzl

= Ax; + Bu; + Gwyyy .
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Here {#,:t=0,...} is an increasing sequence of information sets which is based on
a martingale difference process wy, ;| = (W41, w.r41) such that E(wy,41]%,) = 0 and
EWi 1wy 411% ) = 1. u, is the p x 1 control vector, which may influence the ¢ x 1
endogenous state vector y, but does not effect the r x 1 exogenous state vector, z;.
Each of the matrices are conformable to these vectors.

To solve this problem the cross product terms and the discount factor are
eliminated by defining the selection matrices U, =[/,0] and U. = [0, ] such that
U.A U;, =0, UZGU;, =0, and U.B = 0. Next let

v =BPUNX, zo=F"Ux, o= B+ RTW, WX, (1)
A% A
Y ) = pV24 - BRT'WY), B = B'2U,B, and
0 A% 4
0 0
vy 2\ 0- WR-1 13
v 0L

The solution to this LR problem is given by
v, =—F,y, — F.z,
where F, =[R+ B,P,B,]"'B,P,A,, and F.=[R+ B,P,B,]"'B|[P,A,. + P.A_.].
The solution is found in two steps. First, P, solves the Riccati equation
Py = ny + [4yy — B}’F}’]/PJ’[AW — ByF,] + F;RFy
and second, P. satisfies the Sylvester equation
P.=0Q,. +[4,, — B,F)|P,Ay. +[A), — B,F,] P-A...
Reversing the definitions in (1) the solution to the discounted LR problem is
u=—[Fy+R"W,ly,— [F-+ R ' W.]z.

If we substitute this optimal decision rule into the law of motion for the state
variables we obtain

Vit Ay — By[Fy + R W/y] Ay: = B)[F- + R W]
Zi+1 0 A-.

Vi ny Gyz Wyrt1
x +
Zy 0 Gzz Wzl

= [A — BF]X; =+ GW/IH_I.

This closed loop system determines the stability of the LR problem. In particular the
eigenvalues of the matrix [4 — BF] must be all less than one for the system to be stable.'*

3To avoid unnecessary notation I delete the superscript on A4 and Q below.
14See Anderson et al. (1996) and Ljungqvist and Sargent (2000) for a discussion of stability.
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Under the LR problem the agent can learn about the economy independent of
their optimal decisions. This result follows from the certainty equivalence property.
Certainty equivalence is dependent on quadratic objectives, linear constraints and
independence among the distribution of shocks and the agents choice.

In learning problems the agent observes signals which are a linear combination of
the hidden state, control and random error vectors. For simplicity only the
endogenous state vector is hidden from the agent. The endogenous state vector
follows:

YVir1 = Ayyyz + Ay;Zt + Byu, + G1W1t+1: 15
while the agent observes each period ¢ the s x 1 vector of signals
§; = Cyy, + Cy.zi + Duy + Hwo,.

Assume

Wirl , , I 0
W Wiip1 Wa) = 0o 1)

The agent is interested in forecasting the endogenous state vector
= E(y,|u,,z,,s,,s,_1,...,so,ch).l(’ The Kalman filter updates the agent’s forecast
according to

J’}H-l = Ayy_)/:'t =+ Ay;Z, + Byu, =+ K]a[,
where a, = 5, — §; = Cy,(y; — J,) + Hwo,. The Kalman Gain is defined by
K, = A4,%,C,(Cy,%,C, + HH')™',
and the conditional variance—covariance matrix of the state is updated according to

2 = A)’}’ZIA;»y + GG — AyyZ,C/

W(CyZCyy + HH) ' Cy 2,4, .

In the optimal experimentation literature the agent has some ability to manipulate
the flow of information. This means that H is a function of the agent’s decisions, so
that the variance—covariance matrix for the signal is also a function of the control
vector, u. As a result the agent’s decision influences the distribution of the state
vector. Thus, the certainty equivalence property no longer holds. This means that the
agent’s optimization problem cannot be separated from their forecasting problem. In
the next section the optimal experimentation problem is formulated.

'>The superscript 1 refers to the column’s of G associated with the endogenous state variables. Without
loss of generality from now on I will delete the superscript on G.

167 jungqvist and Sargent (2000, pp. 643-649) derives the Kalman filter in a similar circumstances. They
also demonstrate the duality between the optimal control and filtering problem.
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4. Optimal experimentation

In the optimal experimentation problem the agent chooses a sequence {u} to
maximize

00
_E (Z ﬁl[u;Rut + y;nyyl + zy;QyZZt + Z;szzf + 214; W;yt + 2”; W;Zt]lf())
=0

subject to

Xip1 = Ax; + Bu; + Gwygg,
J>t+1 = Ayy)A/z + Ayzzt + Byu; + K,a, = Flug, 9,2, 24,7, @)

Kt == AythC/

sy

(CyZ,Cy+ HH') ™', (3)

S = Ay Z A, + GG — 4,,2,C, (Cy2,C,, + HH') ' Cy 2,4,

= G[utazta Ztaf]a (4)

Zi+l = A:zzt + GZZWZIH = Z(Zt)>

and

E(Z[w + |y,|2]|9fo> <oo.
t=0

Under optimal experimentation the agent is learning about both the endogenous state
vector y, as well as some of the parameters of the model. Usually, these parameters are
elements of the matrices 4,,, 4,. and B,. Kendrick (2002a) keeps these two vectors
separate in his notation since the control vector does not influence the parameters of the
model. To keep the notation simpler the equation of motions for the unknown
parameters is attached to the bottom of the endogenous state vector.

In the optimal experimentation problem, the variance—covariance of the signal,
HH’, is a function of the current control u, and exogenous state vector z,. In
particular, the uncertainty in the signals is a linear function of the control and
exogenous state vectors. This effect may be represented by replacing Hw,, with

/ /
Hwy, + tiujer; + 122,82,

where wy,, ¢1;, and &, are not correlated. The variance—covariance matrix, HH’, is
now

V,=HH + r%u; Viu, + ‘L'%Z/t Vazi, %)
where V'3 = E,[e),¢],] and V4 = E/[ey8),]. The 71 and 1, are perturbation parameters

such that each element is equal to one under optimal experimentation.'” These

7L jungqvist and Sargent (2000, pp. 643-649) allow for time varying variance—covariance matrix as long
as the agent knows them.
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perturbation parameters can be thought of as the parameters in the definition of
directional derivatives in the direction u, and z,, respectively. In addition, as both 1
and 1, approach zero the variance—covariance matrix approaches HH’, so that the
problem reduces to the LR problem.

In this case the Bellman equation becomes

VWIs Zts Zl‘a T] = E[H[utaytyzta T] + :BVD;H»DZH*D Zl‘+1a T]"g/jt] (6)

Here

H[utsyta Zt, T ] _(u Rul‘ +y[Q}yyt + 2y[Qy~Zt + z Quzl + 2” W/yt + 21/[ W/Zf)

This dynamic programming problem incorporates two new effects which are not
present in the LR problem. In both cases the control vector effects the
variance—covariance of the signal by (5). The first effect measures the effect of the
choice on the Kalman gain through Eq. (3) which in turn influences the conditional
expectation of y,; in (2). The second effect deals with the optimal choice on the
conditional variance—covariance matrix for y,,; in (4). To analyze these effects it is
necessary to find the first and second order derivatives of Flu,,J,,z;, 2, 1] and
Gluy, z,, 2, 7] under optimal experimentation. In Appendix A the following Lemma is
proved.

Lemma 1. The pamal derivative of the Kalman filter are OF /Ou, = vec([B/ 07,
OF /09, = vec([A4' oy 0) — ((Kf) ® Iq)(CA} ® I, vec,), OF [0z, = vec([A’,, D), OF/
02,;#0,0F /01, =0, 6F/6‘52 =0, O*°F/ou,0X, =0, 0°F/07,0X,#0, d° F/GZ,GZ, =0,
0*F /022 #0, 3G/du, =0, 8G/dz; =0, 0G/dX,#0, 8G/dot; =0, 3G/dt; =0, and
0*°G/ 62,2 #0 when the perturbation parameters are zero.

The control and exogenous state variables change the agent’s forecast,
Flu;, 9,521, 2,,1t], of the state vector only through their direct effect on the
endogenous state vector. On the other hand, a change in the estimated endogenous
state vector, J,, also changes the signal received by the agent which influences the
state vector through the Kalman gain, K,. The variance—covariance matrix effects
the agent’s forecast of the endogenous state vector through the change in the
Kalman gain.

The equation of motion for the variance—covariance matrix, Glu,, z;, 2, 7] is not
influenced by the control and the exogenous state vector when the perturbation
parameters are zero. The change in the current variance—covariance matrix on its
future value has two effects. The direct effect is generally positive but the effect on
the Kalman gain moves in the opposite direction. In the example discussed below the
direct effect always dominates. Because the filtering problem is the dual of the
control problem the variance—covariance matrix converges to a steady state over
time under conditions similar to the conditions necessary for the stability of the state
vector.

¥To cut down on notation the functions F and Z have been stacked together and is called F. vec(A)
stacks the columns of A in a vector starting with the first column.
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5. Perturbation method

The optimal experimentation problem introduced in the previous section does not
have an explicit solution. In this section the perturbation method is used to
approximate this problem following the analysis of Gaspar and Judd (1997), Judd
(1998), and Jin and Judd (2002). The optimal experimentation problem fits into the
general stochastic model of Jin and Judd. The perturbation of the stochastic model
examined here is around the solution to the LR problem which is distinct from Jin
and Judd in that they examine the perturbation around a certain steady state.
However, the LR problem does have an analytic solution and the Kalman gain is
analytic. As a result, the optimal experimentation problem should be analytic in the
neighborhood of the LR problem, so that Jin and Judd’s Theorem 6 implies that
there is a unique and differentiable solution to the optimal experimentation problem
in the neighborhood of the LR problem."

The tensor notation is used extensively in the perturbation method.*® This
notation may be illustrated by writing the quadratic form x’Ax as a;x'y/ which
means » ;> djjX 'y/. As a result, a summation occurs whenever a superscript and a
subscript match The partial derivatives aF ;s 215 Uy, X1, 7] /OX, are represented by F; i
for each state vector. For example F} = t=al ; for the exogenous state vectors i and ]
In a similar way F’ would be the part1a1 derlvatlve of the ith state variable with
respect to the ath control. F' = 0 for the exogenous state vectors. F; represents the
partial derivative of the jith state variable with respect to the Ith variance or
covariance term. F; = 0 for the exogenous state vectors. Finally, F', represents the
partial derivative of the ith state variable with respect to the .#th perturbation
parameter. F’, = 0 for both state vectors.

Given this notation the Euler conditions may be written as

E[Hx[u[j}l’ o Zt’ T]’y” Zn T] + BV"D}H»I’ Zt+15 ZI+13 T]F;[u[j}t’ Zts le T]’ j;y[: Zt, Zf’ T]
+ BV 115 Zerts Zes G [l 20, 200 7), 200 20, 7)1 F 1< 0 ()
for each controla=1---p

To illustrate how the tensor notation is used look at the second term for the oth
control vector

ﬁ%’[ﬁwh Zitl> 2141, T]Fi (WD zi, 24, T), D1 200 21, T)

— B Z a VD}[+19 Zt41, ZT+17 T] ay)‘Jrlt
AR Outy

b}

where ¢ is the dimension of the endogenous state vector. Consequently, this term is
just the application of the chain rule for a higher dimension. It is also the usual term
found in the necessary conditions for the optimal of a dynamic programming
problem.

19See Chen et al. (2005) for a discussion of analytic solutions to linear integral equations.
20See Gaspar and Judd (1997) and Kay (1988) for details about using tensor notation.
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The first two lines of (7) are similar to the Euler equation under the LR problem.
The third line is new. It looks at changes in the future variance—covariance matrix as
a result of a change in the control variable, 0, ;/0u, = Gi, which in turn
influences the value of the firm, V/;. While the value function is affected by the
variance—covariance matrix when the perturbation parameter is zero, Lemma 1
shows that the variance—covariance would not be changed by the change in the
control variables in the neighborhood of the LR problem. Lemma 1 also shows that
the variance—covariance matrix does not influence the effect of the control variable
on the state variables, 09, ;/0u, = F;[u[f/t, Z1, 24, T, ¥y 215 24, 7] In the neighborhood
of the LR problem. This means that the main impact of the optimal experimentation
under the perturbation is given by the impact of the future variance—covariance
matrix on the marginal value of the state variable, V[, |, Z1, Zi41, 7). As a result,
Vik[prS, zer1, 58, 0] must be calculated in the neighborhood of the LR problem
where the superscript LR refers to the linear regulator solution.

Solving the optimal learning problem (6) and (7) explicitly is problematic. The
difficulty comes about because of the additional non-linearity introduced by the
control variables influence on the Kalman filter. However, the problem reduces to
the LR problem when the perturbation parameter, 7, is set equal to zero. As a result,
the perturbation method of Gaspar and Judd (1997), Judd (1998), and Jin and Judd
(2002) may be applied to (6) and (7).

Theorem 6 of Jin and Judd applies to this situation with a slight modification. Jin
and Judd apply the perturbation in the neighborhood of a certain steady state while
we are interested in the neighborhood of the LR problem. However, we do know
that the LR solution, u[p/®,ztR, 5IR 0], is analytical since it is a simple linear
function of the state variables. It also follows from Lemma 1 that the equation of
motion for the state vector, Flu,,J,,z:, 2, 1], and the variance—covariance matrix,
Gluy, z;, 24, 7], can be differentiated to any order in the neighborhood of the LR
solution, although Lemma 1 provides only the first two derivatives.?' It also follows
that these functions are analytical since they are compositions of analytic
functions.>® As a result, the argument of Jin and Judd follows so that there exist a
unique solution, u[y,, z;, 2, t] and V[p,, z;, Z;, 7] to (6) and (7) in the neighborhood of
the LR problem. In addition derivatives of this solution may be found through
implicit differentiation in the same neighborhood.

The radius of convergence of this solution is not known. Up to now there are only
limited results on the radius of convergence for the solution to integral equations
such as (6) for the optimal experimentation problem. The radius of convergence is
the maximum interval in which the Taylor series for the solution converges. Chen et
al. (2005) develop a procedure for finding the radius of convergence to such an
integral equation when the solution is in R' and the integral equation is linear in the

2"Higher order perturbation of the control and value function are feasible, but it would be necessary to
find the corresponding order of the derivatives of Flu,, J,, z;, 2;, 7] and Glu,, z;, 2, t]. While this is feasible it
would be very time consuming. As a result, one should rely on automatic differentiation to calculate higher
order derivatives and perturbations. See www.autodiff.org.

22See Chapter 10 of Rudin (1974).
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solution. While more general results are not available, it is known that analyticity
fails when the primitives are not analytical, the solution is not unique or the process
is unstable.?® In this case the primitives, such as the Kalman filter, are analytical.
Following the work of Kiefer and Nyarko (1989), Balvers and Cosimano (1993),
Keller and Rady (1999) and Wieland (2000a) the solution is unique as long as the
experimentation effect is not too large. Finally, the conditions under which the
process is stable will be discussed below. As a result, one can be confident the
solution is within the radius of convergence for the problems discussed here, as long
as one rules out these anomalies. In particular, the dynamic programming method of
Wieland (2000a) can be used to identify the points of discontinuous policy functions
and non-differentiable value functions in optimal experimentation problems.

The perturbation method involves a Taylor expansion of these functions around
the known LR solution. In this case the expansion is around W}R,Z,,Z}R,O].M

N ~ ~LR LR arsLR LR I ~LRyi
ua[ytyztsztsf]'\’ua[yt >Zt92[ 50]+ufD}[ ,Z;,Zt 90][xt_x[ ]l

+ui[PrR, 2, ZER 0]z, — 2R (8)

Vl—_]’}[a Zty Zl» T] ~ V[);}R’ Zt, Z}R’ 0] + Vi[);}R’ Zt, Z}IR’ O][)%f - -)%}R]l
+ VI[.);;HRa Zla Z}R’ 0][21 - Z%R]I
+ VR, 2 SR 0% — £ RTTR = RV
+ Vi 2z PR OI% — 55Tz - 2R
+ 3Vl 2, IR0l - SR E - 2R ©)
As the perturbation vectors approach zero the variance-covariance term HH'
approaches the LR value so that the equation of motion for the variance—covariance
matrix, Glu,,z,2,,1], approaches its LR counterpart. Thus, X; approaches Z}R as 1
tends to zero. In addition, the Kalman Gain, K, also approaches its value under the

LR problem so that X; tends to fctLR. This means that the first two terms in (8) are
identical to the LR problem so that

WS 20 2R, 00+ wl R, 2, X8 0)%, — %)
= —[F,+ R'"W, iR —[F, + R\'W, ), — 3R] = [F. + R™' W]z,
A similar argument applied to (9) leads to
VD/}}R: Zt Z}Ra 0] + Vil’_i\/}‘Ra Zt, Z?Ra 0][)%1 - )%}R]i

1 . . . _— . .
+ 5 Vl/ }IR,ZI, Z}‘Ra 0][xl - xi_‘R]l['xl - X%R}I

~LR Py P LR LR Py P N LR
=p+[x"] P p Dol T R i P p [X — X1

BChen et al. (2005) provide an example of the first failure. Balvers and Cosimano (1993) provides an
example of the second problem. Santos (1994) provides an example of the final case.
**In Appendix A it is shown that ¥, = 0 and «, = 0.
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Here P.. was not needed for the solution to the LR problem but can be found
from the Riccati equation following Hansen and Singleton (1998, p. 162.)

Poo= Q..+ A PA, + A P.A, + A, P.A.
—[4).P,B, + A__P.B,|[R + B,P,B,|'[B,P,Ay. + B,P.A..] + A..P-. A,

which is solved by iterating on P... Finally, the constant in the value function, p, is
found by iterating on

pjr1 = Bp; + P trace(PGG').

This term represents the impact of uncertainty on the value of the agent under the
LR problem so that uncertainty influences the value function even though it does not
affect the decision rule. All these terms can be calculated efficiently using the
doubling algorithm of Hansen and Sargent (1998).

The remainder of this section derives an expression for the last term in (8),
Ouy JOX,r = u[PrR, z;, 2R, 0] where the second subscript on the variance—covariance
matrix for the partial derivative refers to the particular element of the
variance—covariance matrix. First the impact of the uncertainty on the value
function is found by taking the total derivative of the value function (6) with respect
to each of the ¢*> variance—covariance terms in X,. Here ¢ is the number of
endogenous state variables which are hidden from the agent.

V]D’}[a Zt: ZI; T] = EI[BVjW[+l,Zt+15ZI+I>T]F]}[M[)/>[9ZY7 Zf) T]:j}[a Zl’ Zl: T]
+ BVJ[);[J,»l’ZFFl; Zf“rl’ T]G.[I[u[j}[:Zh Z[: T]? Zf7 Z[a T]]s (10)

where I = 1---¢* terms are ordered as in vec(Z;). In this equation all the terms are
known for the LR problem except V;. Eq. (10) is a first order system of stochastic
difference equations in the partial derivatives of the value function with respect to
the variance-covariance matrix. The forcing term consist of the impact of the
variance-covariance matrix on the state vector through the Kalman filter, F/,
which in turn changes the value function based on the marginal value of the state
vector, V;. The future impact of the variance-covariance matrix on the value
function V[P, 1, Zi+1,2Zs4+1,7] is changed because of the effect of the variance-
covariance matrix on its future value, 0X,41,/0%,; = G{ . For stability the ¢ x ¢
matrix formed from G/ must have eigenvalues less than one. As a result, these
eigenvalues being less than one is an essential condition for the perturbation to be
well defined. In these circumstances, these equations can be stacked into a vector of
¢* first order linear difference equations which can be iterated on to yield
VilprR, z,, 2R 0] for all 1.

To find the second order effects, 0V /0X,,0y,;, in Appendix A (10) is differentiated
with respect to the ¢ + r state variables. When the perturbation vector is set to zero,
these derivatives are reduced to

ViR, 2, 01 = BBV R, 21, 258, 01F%,

+ BV P, e, ZERL OF + FLup) Gy, (11)
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This equation is also a system of first order stochastic difference equations. In this
case the forcing term is the effect of the variance-covariance matrix on the marginal
impact of the current state vector on the future state vector, dy,,;/0Z 0y, = F/;.
The future impact of the variance—covariance matrix on the marginal value of the
state vector, V. is also changed because of the effect of the variance—covariance
matrix on its future value, G{ . Again, the eigenvalues of the matrix made up of the
elements G{ must be less than one for this system of difference equations to be stable.
Consequently, if (11) are stacked together for each variance—covariance term, then
(11) is a first order linear difference equation in the ¢*> x (¢ +r) terms for
ViR, z;, 2R, 0.

The results for a change in elements of the variance—covariance matrix on the
optimal control, Ou,/0X,;, can now be calculated. While the calculations are long,
the results are simplified since the function G is not influenced by changes in the
optimal controls when the perturbation vector is zero.*> As a result, for each control
vector y = 1 - - - p, there are ¢° equations for each element of the variance—covariance
matrix.

PRz ZPR0 = — (B, [ur R, iR, 2, 01+ BValPr . 2, 205, 0V FL AT

X[EABV ik [Phys 2es1, ZE8, O1FL GX ), (12)

t+1>

where the inverse refers to the inverse tensor matrix.’® This system of equations
may be formulated as a system of p x ¢*> equations which can be solved for
all the partial derivatives Ou,/0X,;. When the matrix of this system of equations
is negative definite, then the problem has an interior solution so that the
bang-bang solution of Balvers and Cosimano (1993), etc. is not present in
the approximation. This condition is identical to the condition in Theorem 6
of Jin and Judd (2002) that the operator is invertible in the neighborhood of the
LR problem.

By substituting (12) into (8) the linear approximation of the optimal controls is
complete. Examination of (12) reveals that the variance—covariance matrix
for the hidden state variables influences the decisions of the agent through its
influence on the value function for the agent’s problem. The chain rule implies
that there are two parts to this effect. First, the change in uncertainty changes
the variance-covariance matrix through the Kalman filter, G%. Next the
variance—covariance matrix impacts the evaluation of how the control vector
influences the marginal future value of the state vector, V,-KF;. Both of these
effects are manifested through the change in uncertainty on the marginal value of the
state vector, V;x based on (11). These effects work through the impact on the value
function in this respect the results are similar to Ito’s lemma in continuous time
stochastic control.

2Eq. (12) is derived in Appendix A.
26See Judd (1998, p. 500).
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The stability of the optimal experimentation problem can also be examined by
substituting the optimal solution (8) into the equation of motion for the state vectors.

Yit1
Zt+1
LR
vec[2 1 — 2]

Ay — BJ[F,+R'W!] A,.—B)JF.+R"'"W. B

= 0 A 0
0 0 Gy
Vi Gy Gy
Wyt+1
X Zt + 0 G.. < ) .
=
vec[Z, — IR 0 0 i

Here both elements u’J and G{ are evaluated at [)?,Lfl,z,“, > ,Lfl, 0] and are stacked in
conformable matrices. The last line is added to the original closed loop system of the LR
problem, x,.; =[A4 — BF]x, + Gwj,41, because the variance—covariance matrix now
influences the optimal decision and is part of the state vector. This last line is the first
order approximation of the equation of motion for the variance—covariance matrix, G,
in the neighborhood of the LR problem. From the stability analysis of the LR problem
the conditions for [4 — BF] being stable are already known. Now the new matrix for the
closed loop system is a triangular matrix. As a result, the only additional conditions are
that the eigenvalues of the matrix formed by G need to be less than one which was used
to assure the stability of (10) and (11). However, Ljungqvist and Sargent (2000, pp.
650-652) demonstrate that the Kalman filter is the dual to the LR problem. Thus, a
similar set of conditions assure that the closed loop for the optimal experimentation
problem in the neighborhood of the LR problem is stable.

In summary, the perturbation of the optimal experimentation problem in the
neighborhood of the LR problem is well defined. First, we know the primitives
such as the Kalman Filter are analytical. Second, we know the solution is unique
as long as the matrix formed by the elements [E[IT,,[ulR,ytR, z, 0]+
ﬂV,-k[)?tLﬁ,z,H, ZIL+R1, O]foFfj]] is negative definite in the neighborhood of the LR
problem. Finally, we know that the closed loop system of the optimal experimenta-
tion problem in the neighborhood of the LR problem is stable as long as the matrix
[4 — BF] is stable. Thus, (8) represents the first order approximation of the optimal
experimentation problem in the neighborhood of the LR problem.

6. An example

Balvers and Cosimano (1990) use optimal experimentation to explain the slow
adjustment of prices for a firm with some monopoly power. Subsequently, Cosimano
et al. (2002) apply this argument to a bank to explain the slow adjustment of loan
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and deposit rates to changes in the treasury bill rate. The presence of monopoly
power can be rationalized based on switching cost for the bank’s customers along the
lines of Klemperer (1995). The switching cost implies that the demand for loans is
dependent on market share. The market share is represented by the presence of
lagged loans and deposits in the demand for loans and supply of deposits,
respectively. The demand for loans is also dependent on the bank’s rate relative to
the average loan rate in the market. The supply of deposits is also dependent on the
relative deposit rate.?’

These generalizations of the original Balvers and Cosimano model yields an
optimal experimentation problem in which there are two control variables, eleven
state variables including lagged dependent variables, and two signals used to
estimate four parameters. Yet, the solution can be approximated quickly on a
standard computer.

The bank sees the demand for loans

Li=los+ hLioy — Ly — i1+ e
and the supply of deposits
Dy =do,+diDioy + dof[rl — Pl + e,

Here, define L, as the demand for loans by the ith bank at time #; ¢, is the random
change in the demand for loans for the ith bank at time ¢*%; ri; is the ith bank’s loan
rate at time #; k= (1/(N — 1))21.]\;1#[;’%/ is the average loan rate in the bank’s
market at time 7 excluding this institution, where N is the number of competitor
banks; D, represents the supply of deposits to the ith bank at time ¢; r’t?i is the ith
bank’s deposit rate at time ¢; ¢, is the random change in the supply of deposit for the
ith bank at time #; r® = (1/(N — 1))2;\;1#,r3 is the average deposit rate in the
bank’s market at time ¢ excluding this institution.

The bank observes the quantity of loans and deposits but does not know the true
slope and intercepts for the demand for loans and supply of deposits. The intercepts
are autoregressive to represent the consumers who are not sensitive to changes in
interest rates. In particular, /o, = lop + anlo,—1 + &3 and do, = do + ando—1 + €4,
while the slopes are given by /»;, = > + &5 and d»; = d> + €.6. As a result, the bank
sees the two signals

L L ) _ D_ D
stv=los —tres(r;—r)+en and sy =do, — tpee(r,; — 1) + &

?TSee Varian (1980) for a model of monopolistically competitive market in which a distribution in price
represents an equilibrium strategy. The model only represents the decision problem of an individual bank
for simplicity. McGrattan (1994) could be used to introduce strategic considerations but this would be
beyond the scope of this paper.

2The normality assumption cannot be strictly true since the demand for loans could be negative. To
avoid this possibility the normality assumption could be dropped, as long as, the bank cares about the
mean and variance of the state variables. See Ljungqvist and Sargent (2000) for the derivation of the
Kalman Filter under this case.
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The bank chooses loan and deposit rates which maximize profits per period:
(k= ri = COL 4+ (i1 =) = 15 = CPD.,

subject to the demand for loans and the supply of deposits. The r, is the treasury bill
rate; o is the reserve ratio and CF, CP are the marginal resource cost of loans and
deposits, respectively. These marginal resource costs are assumed constant for simplicity.
The control vector is u, = (rb ”3‘ ', the endogenous state vector is y, =
(C,L C? Ly D,y lo, doy) and the exogenous state vector is
z,= (@t P € 1, 1). The equations of motion for the parameters, /o, and do,, the
bank wants to learn are included in the endogenous state vector. The interest rate on
checking accounts, rtC is added to the vector of exogenous variables since it is statistically

significant in the VAR estimates. The matrices in the augmented LR problem are

L 0 - 0 0 -1 0
R = . W= 5
0 dz - 0 —d2 0 —dz(l — OC) 0
) L 0 - 0 -1 0
W= ;
7 0 d, 0 d 0 1
A, has roots less than one;

0 0 5L O

0 0 0 d (1) (1) 0 0 0 L 0
o o ol 0 0 0 0 0 0 dr(l—uc)
Q"yE% (; di 0 0 0 0 QZ'E% 000 O
1 01 0 0 00 b 0 00 0
0 d>(1—0) 0 0 0
01 0 0 00
L 0 0 0 0 100 0 0 0
0 —dy 0 0 0 01 0 0 0 0
1[0 0 o A 0 o 00nL 0 1 0]
Qﬂzi 0 0 0 —dil—a) O ™~ 100 0 d 0 1]
0 0 0 1 0 000 0 a; O
0 0 0 —(1-x 0 000 0 0 an
0 0 0 0 0 0 0
0 0 0 0 0 0 0
L 0 0 0 0 —1, 0
Ay = ;. By = >
0 —d, 0 0 0 0 d,
0 0 0 0 I 0 0
0 0 0 0 d 0 0
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o0 0 0 O

o0 0 0 O

0 0 (4] 0 03 0
Gyy = ;

0 0 0 a2 0 04

00 0 0 a3 O

0 0 0 0 o4

o)
<
I

>; C,. and D are zero.

o O 0% 0
H= , Vi=Vy4= ,
0 oy ’ N 0 a%
o ot 0.0 0 0 0),
7\ 0 63 00 0 0

The parameter values for this model are listed in Table 1. The parameter
estimates are based on monthly data from 1993 to 1999 which was taken from a
financial institution in a large metropolitan area.’® Loan commitments are
used for the loan demand and savings accounts are used for deposits. Both
accounts are highly persistent with the expected dependence on the spread
between bank rates and market rates for the metropolitan area. The exogenous
state variable, z,, is represented by the VAR model in Tables 2 and 3 which
are used to construct the matrices A4.. and G... This state vector includes
the market rates for loan commitments-r", savings deposit-r, interest bearing
checking accounts-rC, treasury bill rate-r and the constant. One month lag in
each of the interest rate variables was sufficient to generate white noise
errors.

The first step of the simulation procedure is to implement the doubling algorithm
of Hansen and Sargent (1998) and Anderson et al. (1996). This procedure generates
the LR solution. The behavior of the bank’s loan rate relative to the market loan rate
is portrayed in Fig. 1 by the squares while the triangles represent the market rates.
The bank’s deposit rate over 30 months is given in Fig. 2. For these simulations 11
random draws from the normal distribution each month were used to generate the
movement in the state vector, x, from month to month. The first month is an initial
value for the state vector which approximates a steady state. In Table 4 the state
vectors for the first and sixth month are recorded for the LR problem in columns 2
and 4. The optimal loan and deposit rate for the bank are listed in Table 5 in

The stochastic specification is slightly different since there is a variance—covariance matrix, Vs,
between w1 and wy,. This causes the Kalman filter to change by replacing 42,C" with 4X,C" + V5.
30Rich Sheehan provided these estimates.
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Table 1

Parameters

Variable Value Standard deviation Value

ly 4.8601 % 10* o1 1.4436 % 10°
an 0.9000 02 1.2017 % 107
dy 2.1029 % 10° 03 5.9955 % 10°
an 0.9000 o4 7.4062 % 10°
I 0.9946 as 1.8423 % 10
d 0.9245 a6 2.1667 % 10°
I 9.0943 % 10%

d, 4.3335 % 10°

o 0

Table 2

VAR for exogenous state vector

State variable rk P € r Constant
rk 0.5512 —0.5415 0.5000 0.2785 0.0470
P 0.0172 0.6793 0.4354 0.0367 —0.00218
< —0.01459 0.0527 0.9075 0.0400 —0.0006
r 0.0352 —0.9238 1.2885 0.8467 0.0094
Table 3

Variance—covariance matrix for VAR

State variable rL P < r

L 2.0177 %1073 5.5679 % 1077 1.1708 % 107 4.4902 % 1077
P 1.2331 %1077 —1.1915% 107 —5.5679 % 10~'°
IS 8.2302 % 1077 1.0038 % 10~°

r 327 % 107°

columns 2 and 4. The loan rates under both learning and experimentation start
above the market loan rate. The loan rate is about 51 basis points below the market
average rate in the sixth month, while the deposit rate is about 1.6% above the
market average after six months. As a result, there is a tendency for the bank to set
its loan rate below the market rate and the deposit rate above the market rate so as
to expand the bank’s value even though there is no experimentation.

In Table 6 column’s 2 and 4 and Fig. 3 the Kalman gain under learning starts at
about 0.5 for the loan rate and after six months it decreases to near the steady state,
0.3. This decline in the Kalman gain follows from the decline in the conditional
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Table 4

State vector for 1st and 6th month

State variable X1 xR Xg xER

ct 0.0600 0.0600 0.0600 0.0600

cP 0.0100 0.0100 0.0100 0.0100

L 4.4424 % 107 4.4424 % 107 7.2433 % 107 7.1816 % 107
D 4.4062 x 107 4.4062 % 107 2.6379 % 10% 1.9506 % 10°
los 1.3108  10° 1.3108 % 10° 5.8149 % 10° 5.9149 % 10°
doy —5.9325% 107 —5.9325 % 10’ —3.1834 % 107 —3.3592 % 107
rt 0.1177 0.1177 0.1237 0.1237

P 0.0238 0.0238 0.0231 0.0231

< 0.0129 0.0129 0.0122 0.0122

r 0.0542 0.0542 0.0538 0.0538
Constant 1 1 1 1

Table 5

Control vector for 1st and 6th month

Control variable U ulLR U u6LR

rt 0.1221 0.1221 0.1196 0.1186
P 0.0254 0.0254 0.0394 0.0389
Table 6

Kalman gain for Ist and 6th month

Kalman gain K, KlLR K¢ K(JLR
rt 0.1828 0.4956 0.2591 0.2911
/P 0.0063 0.4487 0.0016 0.0774

variance of the loan intercept which can be seen in Fig. 4.°' As the conditional
variance of the constant for loans decreases over the six months, as seen in Table 7
row 2 or Fig. 4, the Kalman gain decreases which increases the convergence of this
conditional variance. The deposit rate exhibits similar patterns for the Kalman filter
accept that the change is more pronounce.

3 The initial value of the Kalman gain can be manipulated by changing the variance of the constant
relative to the variance in the regression. By lowering the variance of the constant the conditional variance
of the constant decreases relative to the variance of the regression which leads to a decrease in the Kalman
gain.
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Table 7
Variance for Ist and 6th month
= = X3 e
Optimal 6.1705 % 10! 9.9127 % 10" 9.2829 % 10! 2.2201 % 102
LR 2.0474 % 1012 1.1751 = 10" 8.5563 % 10'! 1.2122 % 10"

In Table 8 the marginal value of the state variable, V; is listed. These results are
consistent with intuition. An increase in cost reduces the value of the bank, while an
increase in demand increases its value. In summary, the LR solution behaves in a
consistent and intuitive way.

The conditional variance has a positive impact on the value of the bank in Table 9.
This results from the difference equation (10). The source of the positive sign is the
impact of the variance-covariance matrix on the Kalman Gain, F. Balvers and
Cosimano (1990) show that the bank has an increasing return to uncertainty in the
intercept. As a result, Jensen’s inequality implies that higher uncertainty leads to an
increase in the value of the bank, V;>0.

We also can find the effect of the variance—covariance matrix on the marginal
value of the state vector to the bank, Vy;. From the difference equation (11), the sign
of this second derivative is driven by F), which represents the impact of the
variance—covariance matrix on the marginal effect of the state on the Kalman Gain.
Suppose we look at the diagonal elements of the variance—covariance matrix to
identify the sign of this second order partial derivative. A higher expected value of
the current intercept reduces the value of the signal observed today and this signal is
now multiplied by a larger Kalman gain because of the higher conditional variance
of the intercept. As a result, the diagonal elements of the variance—covariance matrix
have a negative impact on the marginal value of the state vector, V;; <0. Of course,
the diagonal elements could be any sign depending on the covariance between the
signals.

We can now examine the impact of optimal experimentation on the behavior of
the bank. The simulation starts at the same initial values so that the first occurrence
of experimenting is in month 2. This behavior is pictured in Figs. 1 and 2 for the loan
and deposit rates, respectively. The rhombus represents the optimal experimentation.
The loan rate initially goes below the benchmark LR solution by 31 basis points and
goes about nine basis points above by the sixth month. As a result, the bank initially
increases market share with a lower loan rate which the bank takes advantage of
later in time. This decrease in the loan rate increases the uncertainty in the regression
since the loan rate is further below the market rate. Thus, the Kalman Gain
decreases to 0.13 in the second month and converges to the LR value by the 12th
month as seen in Fig. 3. Consequently, the conditional variance for the loan intercept
converges faster to the steady state. The same experimentation occurs for the deposit
rate except that the deposit rate is higher since it is a source of cost rather than
revenue. In addition, the experimentation effect is larger for the deposit rate since the
elasticity of supply for deposits is larger.
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Table 8

Partial derivative of value function with respect to state vector

State variable Vi

ct —1.2817 % 10°
cP —5.5622 % 10°
L 0.1294

D 0.1114

Lo, 0.7153

doy 0.6548

- 7.8314 % 107
P —4.2614 % 10°
© —1.0526 % 10°
r 1.3554 % 10°
Constant 2.4840 % 10
Table 9

V; for 1st and 6th month

Ist Month 6th Month
st 1.2730 % 10~° 7.5818 % 10710
b 4.9437 % 10710 4.9505 % 10710

In Table 10 we can see the effect of the conditional uncertainty on the optimal
decisions of the bank in (12). The increase in the conditional variance of the intercept
leads to a higher conditional variance in the future, G5 >0. The higher conditional
variance leads to a decrease in the marginal impact of the state vector on the value
function, V;x <0 by (11). This change in the marginal value of the state vector
together with the reduction in the demand for loans because of the higher loan rate,
F' <0 leads to an increase in the loan rate charged by the bank. Thus, the bank
lowers the loan rate, see Fig. 1, when the conditional variance of the intercept under
experimentation is below its value under the LR value, see Fig. 4.

The path of the loan rate in Fig. 1 can now be understood. The conditional
variance of the demand for loan intercept under experimentation is initially below
the LR case in Fig. 4 so that the loan rate is lower. By the sixth month this
conditional variance is higher under optimal experimentation and its marginal
impact on the optimal loan rate has also fallen. As a result, the loan rate is now
slightly above the LR case. This continues till the 20th month when the loan rate is
roughly the same as in the LR case.

The same basic pattern occurs for the deposit rate. The deposit rate first goes
above the LR case by 79 basis points since higher deposit rates increases the
supply of deposits. By the sixth month the spread is down to six basis points.
Again by the 20th month there is no difference between the learning and
experimentation decision.

Please cite this article as: Cosimano, T.F., Optimal experimentation and the perturbation method in
the.... Journal of Economic Dynamics and Control (2007), doi:10.1016/j.jedc.2007.03.009



dx.doi.org/10.1016/j.jedc.2007.03.009

T.F. Cosimano | Journal of Economic Dynamics & Control 1 (11l1) III-11R 29

Table 10
u), for 1st and 6th month
ot =P % £
rk 3.4791 % 10713 0 1.1589 % 10714 0
/D 0 —5.3098 107 0 —5.4152% 107"

These simulations confirm most of the qualitative results of Balvers and Cosimano
(1990). The main new result is that after experimenting for a short period of time, the
optimal loan rate goes above the loan rate under optimal experimenting. This new
insight occurs since it is now possible to analyze optimal experimentation problems
in a setting with changing state variables as well as more complex dynamic LR
problems. In addition, these simulations take less than a minute on a standard PC
with a Pentium IT 400 MHz chip. The estimation of the parameters of these models
using the method developed by Hansen and Sargent (1998) and Anderson et al.
(1996) would involve the repeated solution of the algorithm as the parameters are
changed to optimize a likelihood function. Thus, it is now feasible to estimate
complex models of optimal experimentation.

7. Conclusion

This paper has developed a procedure for approximating optimal experimentation
problems for the class of augmented LR problems. This procedure uses the perturbation
method of Gaspar and Judd (1997), Judd (1998), and Jin and Judd (2002). The optimal
learning problem within the context of the LR problem is modified by introducing
parameters into the conditional variance—covariance matrix. These parameters
introduce the possibility that either the control variables or the exogenous state vector
can influence this variance—covariance matrix. This parameterization of the optimal
experimentation problem includes all the examples seen in the macroeconomic literature
such as Wieland (2000b, 2002, 2006), as well as more complex problems. When these
parameters are zero, the optimal experimentation problem reduces to the optimal
learning problem which has a well-defined solution. Thus, the perturbation procedure
can be used to find the first order approximation of the optimal decision of the agents
and the second order approximation of the value function.

The optimal decision under experimentation, (8), is a linear combination of the
usual solution found by iterating on the Riccati equation and a term that captures
the effect of uncertainty on the value function of the agent, (11). This second term
uses four matrices as inputs which consist of derivatives of the equations of motion
for the state vector and the conditional variance—covariance matrix from the Kalman
Filter. The formula’s for these matrices are provided in Appendix A. As a result
optimal experimentation can be analyzed for any augmented LR problem. To
implement this program: first define the matrices for your particular problem as in
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Hansen and Sargent (1998). Second, apply the formulas given in Appendix A for the
four matrices in Eqs. (11) and (12). Third, iterate on the first order difference
equation, (11), to measure the impact of the conditional variance—covariance matrix
on the marginal value of each state variable. The final step implements Eq. (12),
which yields the effect of optimal experimentation on the optimal decision of the
agent. Cosimano and Gapen (2006) implements this algorithm to approximate
optimal experimentation in the neighborhood of any augmented LR problem.

Implementation of this algorithm allows for the empirical evaluation of optimal
experimentation on the optimal decisions of agents. Once the optimal decision for a
particular problem is known, such as the optimal loan and deposit rate decisions
found in Section 6, the estimation procedure of Anderson et al. (1996) and Hansen
and Sargent (1998) can be modified by replacing the LR solution with the optimal
experimentation solution. The estimates of the underlying parameters are found by
optimizing the likelihood function built on this algorithm. It is feasible to estimate
the effect of experimentation since each iteration on this algorithm takes less than a
minute on a standard PC. Thus, the impact of optimal experimentation on optimal
decisions of agents can be accomplished for a large class of applied economic
problems outlined by Hansen and Sargent (1998).
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Appendix A
A.1. Derivatives of F
Let u, have dimension p x 1, y, have dimension ¢ x 1, z, have dimension r x 1, and

a, have dimension s x 1. The matrices have the dimensions so that product is well
defined.

32See Theorem 6.3, p. 43 and item 4, p. 50 of Rogers (1980).

Ka,
Ou,

F
oF = vec([B,0) + vec 0 0
Ou, Y
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K,a, is dependent on V,. As a result, look at

oV _
Ou;
which is zero for 71 = 0.* Thus, 0K,a,/0u; = 0, so that OF [ou, = vec([B’y,O’]).

oF oKa;
v Uec([A/ i) ])+vec(|:—f~30:|)a
o " o

au,‘cl

onu
o o Vet + @ @ L)V © 1))

where
K
5 tat
0 K, 34
76)7, =— 0 ® 1, |(Cyy ® 1 )vec(y).

Here 0 has dimension r x s. Thus,

oF 0 AP C,®1 I
a—yt_vec([ oy ])—(( 0)@ q>( s ® I vec(ly),

oF ., oKa; ,

Ka, is dependent on z, through ¥V, as a result look at

oV, 0tz
oz, 0Oz,
which is zero for 7, = 0. Thus, 0K,a,/0z, = 0, so that OF /0z, = vec([4),, A_]).

621‘52

——Vazdh + (122, @ 1) (V4 ® 1)

OF B aé(Z[‘at
6Zt_ O[ s

where 0 has dimension qrxq. K:a, is the product of three matrices X = 4,,2,C,,
= (Cy 2, C/ 4+ HH')™" and Z =a,. By the product rule for differentiation of

matrices

6K,a,
0,
Next,

(Y®Iq)(Z®Iq)+(X®Iq) (Z®Iq)

X  04,,%.C;
Y 7y 36
=——"— " =vec(A, )vec(C,,

55 =55 (4, )vec(C,)

3See Theorem 6.4 from Rogers (1980, p. 43).

3See item 16, Rogers (1980, p. 53).

34, is not dependent on X,.

3See item 13, Rogers (1980, p. 52).
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which has dimension ¢> x gs.

S; —(CyZ/Cyy, + HH') ' @ I)vec(C})vec(CyY (Cy X, Cyy, + HH) ' @ 1,),7
which has dimension sg x sq.

ORli _ e Yoee(C Y (CyECly + HHY ' @ 1)@, ® 1,)

0x,
— (4,,Z,C;, ® I)(CyZ,Cy, + HH)'®1,)
xvec(C' )vec(ny) (Cy 2, C, ,+ HH)'® I)(a; ®1,).
Next look at the effect of the perturbatlon vector
oF 0K, a,
a— = 6’51
T1 0

K,a, is dependent on 7; through V;, as a result look at

oV, ot ou, )
A= ae VT + @ @ L) (V3@ 1) L
611 6
which is zero for t; = 0. Thus, 0K,a,/0t; =0, so that OF /0t = 0. Tt also follows

immediately that 0F /0, = 0.
Now turn to the second order derivatives.

azF azK,a,
s, Gu,(?Z,

0V, /%u, is independent of X, so that all the terms in this second order derivatives are
dependent on this derivative. Thus, O°F /0u, 0%, = 0.

(K, Q1
0
0’°F 0®1,
505, = — o5, [(Cy ®1,)Vec(l,) ® 1]
v ®I)<I ®K')(I ®1,)
_ (4.9) P\ 53, (5:9) q [(Cy ® I)Vec(I,) ® Iq]’38
0

where I, is the commutation matrix and 0 has dimension ¢*r x ¢*>. The partial

derivative is

5 ZI = [vec(4),) — (K, ® I,)vec(C})vec(Cyy)Y (CyyX,C, + HH') ™' ® 1))
= [vec(4),) — vee(Cyy K))vec(Cyy) (Cyy 2, Cy, + HH) '®1,.%

¥See item 4, Rogers (1980, p. 50).
3See Theorem 6.6 of Rogers (1980, p. 45).

3By Theorem 4.1 of Rogers (1980, p. 21), vec(XYZ) = (Z' ® X)vec(Y).
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The final second order derivative is

azF a2K[a[
—=1 a2 |,
0x? 0’

where 0 has dimension ¢°r x ¢°.

Let S= (9 ®I)I, ®NCyZ,Cy, + HH) ' J0Z ) (59 ® 1) and T = (I(gq) ®

1y) x (I; ® vec(A), Jvec(Cy ) )L sq) ® 1) so that

O’K,a,
0x?

= [vec(4, )vec(Cy,) @ 1,]S[(a: ® 1,) ® 1]

— T[(CyZ,Cyy + HH') ' @ 1) ® 1,]
x[(vec(C,,)vec(Cy) (CyZ,Cly + HH) 'a, ® 1)) ® 1]
—[(4),2:C, ® 1) ® 1,]S
x[(vec(Cy,vec(Cy ) (Cy X, Cy, + HH) 'a,®1,)®1,)
—[(4,,2:C;, ® I)(Cy 2, Cy + HH) ' © 1) ® 1]
x[[vec(Cy,)vec(Cy) @ 1,]S[(ar ® 14) ® 1],

where the partial derivative in S is calculated above in 0Y /0X,.

A.2. Derivatives of G

u;, z;, and 7 only effect G through the Kalman Gain which in turn is influenced by
V,. As a result 0G/0u,, 0G/0z; and 0G /0t are all zero. Next,

aG / 7 /

oz, = vec(Ayy)vec(Ayy)

— vec(A), vec(Cl Y [(Cyy 2,C,, + HH') ' @ I)[Cyy 2,4}, ® 1]

+[4,y2.C,, ® IJ(Cyy Z,Cly, + HH') ™' @ I)vec(Cl )vec(Cyy)
x((CyZ/Cyy + HH') ™' ®@ 1,)[Cy 2,4, ® 1]

—[4,,2,Cy, ® I(CyZ,C,, + HH') ™' @ I,Jvec(Cl Ivec(A),) .

Let U= Iy ® ), ® vee(Cy)vec(A,,) )1 4q ® I,) so that the second order
partial derivative is
aZG / 4 / !
6—212 = — [vec(4),)vec(Cy,) @ 1,]S[(Cyy 214, @ 1) ® 1]
— [(vec(4),,)vec(C,) [(Cy Z,Cy, + HH') ™' @ 1,]) ® 1,]U

yy
— T((CyZ,C,, + HH) ™' ® Ivec(C,y)vec(Cyy)

sy
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x((CyZ,Cy + HH') ' @ I)[Cy 214, @ I,]) ® 1,]

+ 4,2 C,, ® 1] ® 1]

x{S[(vec(C})vec(CyY (Cy 2, Chy, + HH) ' @ 1,) ® 1]
+[((CyZ,Cy + HH') ™' ® I )vec(Cl)vec(Cyy)) ® 1,15}
x[[CyZ: A, ® 1@ 1,]

+{([4)y2,C,y, ® 1)(Cy X, C,, + HH') ™' ® I)vec(C,, )vec(Cyy)'
x((CyZ,Cy+ HH) ™' ® 1)) ® I,}U

— T[((Cy 2, Cyy, + HH') ' & I Jvec(C, )vec(4;,)) ® 1,]
—[[4,,2:C;, ® 1,] ® 1,]S[vec(C; vec(4,,) @ I].

A.3. Derivation of (11)

The second order effects on the value function are calculated by taking the total
differentiation of (10) with respect to the ¢ + r state variables to yield ¢ + r difference
equations for each variance—covariance term

Vilpss 2, 21, 7]

= BBVl 2415 2o, r](Fi[u,,j/[, z, 2T+ F;[u,,f),, 24, 20 TGy, 20, 215 7))
X F) s, $1s 205 Z0s 1] + BV i1 [Prsrs Zetts Dot WG [ty 20 21, 7
+ Golj[u,, Z0, 20, T, 20, 214, r])F]}[u,,f/I, 24, 24, 7]
BV iV 415 Ze415 Z g1, ‘c](ch[u,,f/,, Zy, 2, T] + Fi[u,,j/,, Zty 20, TG D ss 205 24, 7))
X Gf[u,, Z0, 20, T+ BV gr Dt 2ot 15 2o, T](G,I;[ut, Z1, 21, T
+ GE[ur, 20, 20 Tl [Pys 200 20 DD G [ttt 21, 24, T)
+ BV rers Zerts Zers TNF [, Dyo 22 21 7T]
+ F]}x[ut’f’z’ 2t 20 TNy s 26 20, T)) + BV D1 20115 Z,H,r](G{k[u,,z,, 24, 1]
+ Gy [ue, 20, Z 0, T [Py 20 21, 7))

If the perturbation vector is set equal to zero, then by Lemma 1 this equation
becomes (11). In these calculations, use the result that E,[F’,] is zero, since E,[a,] = 0.

A.4. Derivation of Vy;
The second order partial derivatives of the value function with respect to the
elements of the variance—covariance matrix satisfies
Vi 26, 21,7
= BBV ilPrsrs Zewts Dot VE [ty By 20y 20 T+ Fhltty, $po 200 20 QWD 20, 21, 7))
XF])[”taJA’z» 2, 2T+ B VjL[)A’z-H > Zer 1> 2141 T](G%[”r: 24240, T]
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+ Gty 20 Z0, WD 200 2oy D[t D1 200 Z0s T+ BV Dt Zes 1 15 7]
x(F]}J[u,,f/,, Z1, 20T + F]}m[u,,f/,, Z, 2o, TGPy, 20, 21, 7))
BV kilD 15 Ze 15 241, r](FlJ[u,,f/I, Z, 20T + Fi[u[,j/,, 20, 20, TG Dy 20, 24, T])
X G, 20, 205 T+ BV ke DDrsts Zev 1 i1, TG (s 205 21, 7]
+ G gy 24, 20 TP s 20 2100 T G s 205 215 T) + BV KDt Ze15 2041, T)
) (Gl ze, 20 7] + Gl 20 2oy T [P 220 20, 7))
These second order partial derivatives are dependent on uj[y,, z;, Z;, 1], however, it
will turn out that these partial derivatives can be calculated independent of V';; when

the perturbation vector is zero. Once this is complete, the V';; may be stacked into a
q* x 1 vector to yield a first order linear difference equation in VU[J?tLR,z,, Z,LR,O].

A.5. Derivation of (12)

To find (12) first take the total differentiation of the Euler condition with respect
to X, for each control variable «

EI1, e, vy 2o, Tf [0y 20 21, 7]
BV ilPi1 Zeets Zers TUF L §io 200 s VF S [t § s 20 200 7] + Flut, §1 20 217
XU P 20 205 ) + BV ik [P srs Zetts Zeats T [thes Do 200 20 TN G [, 20, 21,7
+ Gf[ut, 20 2 T [P 200 20, T) + BV ilPrits Zetts 2ot TVE [t o 20 215 7]
+ F;«,[unﬁn 2o 20 Ty 20 267D + BV g1 21 Zets r]Gi[ut, Z1, 24, T
X(F/J‘[u,,j/,, 2, 20 7] + F{;[u,,fz,, 24, 20, TG [y 20y 24, 7))
+ BV 1k ig1s 21 Dot QNG 20, 20, TG [, 200 200 1] + Gl [, 20, 21, 7]
XU [Pys 20 20 7)) + BV 1P rts Zev 1 ot TG [, 24, 24, 7]
+ Gi},[u,, 20 20, T D 20, 21, 7))

This equation can be solved for uj to yield
Wiy, ze, 20,1l = — B oyluy, vy, 20, 7

+ BV ialD i1 Zew1s g1, T]F;[u,,j/,, Z1, 24, r]F];[u,,j/,, 24, 24, 7]
+ BV ikD 15 2w 1 2141, ‘E]F;[u,,j/,, Zsy 21, ‘c]Gf[u,, Z4 24, 7]
+ BViDA’;Ha Zikl> 21415 T]Fé(y[ul’j}ti 24 21, 7]
+ BV il rsrs 2ot Zeet, UG s, 20, 1y TUF N[, 91 21, 21, 7]
+ BV kD15 215 2ot T]Gé[ut, Z 21, T]Gf[ut, Z4 24, 7]
+ BVl i1s 215 241 T]Géy[ul, 2 Zn ]!
XABABY i1 Zevts Zets At $io 200 Zos TVl 1o 20, 21, 7]
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+ BV ik 15 Zig1s Zig1, T]F;[u,,f/,, Z4 21, ‘c]Gf[ul, Z4, 24, 7]
+ BVilP 15 Zew1s Ziras T]F;J[ulaj}n 24 21, 7T

+ BV iDig1s 2kt 241, ‘E]G;[u,, z, 24, ‘c]F’;[u,,j/t, Z4 24, 7]
+ BV kD15 215 Zig1s ‘E]G;[u,, Z 20, T]Gf[ut, Z4 24, 7]

+ ﬁV1[9,+1 22kl Zigls T]G;J[uts z1, 21, 7]}

Equation for u} in the text is found by using Lemma 1 to evaluate the partial
derivatives at the LR solution. JJ

A.6. Proof of Vy =0 and u’; =0

For each of the perturbation parameters in the vector, 7,

Vf[j}tbzlazl:r] :EI[H-/"[ulay]aZlaf] + ﬁVjD,})‘+]aZl+la 21+]51]F;[u15j>[7zla Zl: T]
+ﬁV./[j>l+l’ZI‘+ls ZH»I) ‘C]G?]f[ul’ Zt, Zt’ T] + ﬁVfD;[-H’ZFHa Z‘H»l) T]]

The partial derivatives, F/, and G7,, are zero by Lemma 1 when they are evaluated at
the LR solution. The partial derivatives of the variance—covariance terms HH' in the
Kalman filter are zero when the perturbation parameters are zero. It follows that
u, (IR, z,, R 0) = 0 since it is dependent on the partial derivatives F/, and G*.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version
at doi:10.1016/j.jedc.2007.03.0009.
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